Nonlocal Vibration, Buckling and Bending of 1D Layered Quasicrystal Nanobeams
-
摘要: 基于非局部理论,建立了一维纳米准晶层合简支深梁模型,研究了其自由振动、屈曲行为及其弯曲变形问题. 采用伪Stroh型公式,导出了纳米梁的控制方程,并通过传递矩阵法获得简支边界条件下纳米准晶层合梁固有频率、临界屈曲载荷及弯曲变形广义位移和广义应力的精确解. 通过数值算例,分析了高跨比、层厚比、叠层顺序及非局部效应对一维纳米准晶层合简支梁固有频率、临界屈曲载荷和弯曲变形的影响. 结果表明:固有频率和临界屈曲载荷随着非局部参数增大而减小;外层准晶弹性常数更高时,固有频率和临界屈曲载荷更大;叠层顺序对纳米准晶梁的力学行为有较大影响. 所得的精确解可为纳米尺度下梁结构的各种数值方法和实验结果提供参考.Abstract: Based on the nonlocal theory, a 1D layered nano-quasicrystal (QC) simply supported beam model was established to investigate the free vibration, buckling behavior, and bending deformation of nano-QC beams. The pseudo-Stroh formula was used to derive the governing equations for the nanobeam. Using the transfer matrix method, exact solutions of the natural frequency, the critical buckling load, the generalized displacement and the generalized stress for bending problems of layered nano-QC beams was obtained under simply supported boundary conditions. The effects of the height-span ratio, the layer thickness ratio, the stacking sequence, and the nonlocal effect on the natural frequency, the critical buckling load and the bending deformation of layered nano-QC simply supported beams were analyzed. The results show that, the natural frequency and the critical buckling load decrease with increasing nonlocal parameter. The bigger the outer-layer quasicrystal elastic constant is, the higher the natural frequency and the buckling critical load will be. The stacking sequence has a significant effect on the mechanical behavior of nano-QC beams. The obtained exact solution provides a reference for various numerical methods and experimental results of nanoscale beam structures.
-
Key words:
- nano-quasicrystal /
- simply supported beam /
- free vibration /
- buckling /
- bending /
- nonlocal effect
-
表 1 Al-Ni-Co准晶(QC1)和QC2的材料系数
Table 1. Material properties of Al-Ni-Co quasicrystals QC1 and QC2
C11/(109 N/m2) C13/(109 N/m2) C33/(109 N/m2) C44/(109 N/m2) R1/(109 N/m2) QC1 234.33 66.63 232.22 70.19 8.846 QC2 150 90 130 50 1.5 R2=R3/(109 N/m2) K1/(109 N/m2) K2/(109 N/m2) ρ/(103 kg/m3) QC1 8.846 122 24 4.186 QC2 1.2 0.3 0.18 4.186 表 2 准晶均匀简支梁的前四阶固有频率
Table 2. The first four natural frequencies of the quasicrystal homogenous simply supported beam
h/L mode present frequency SSDQM[23] Stroh formula[24] 0.1 1 0.267 7 0.267 6 0.267 2 2 0.982 3 0.982 3 0.982 3 3 1.016 4 1.014 7 1.014 7 4 1.968 7 1.968 7 1.968 7 0.15 1 0.392 7 0.392 3 0.392 6 2 0.983 1 0.983 1 0.983 1 3 1.412 1 1.407 9 1.412 1 4 1.979 0 7.978 8 1.979 0 0.2 1 0.508 2 0.507 4 0.508 2 2 0.984 4 0.984 4 0.984 4 3 1.707 3 1.700 7 1.707 3 4 2.009 8 2.008 3 2.009 8 表 3 两种叠层顺序下准晶简支梁的前四阶固有频率
Table 3. The first four natural frequencies of quasicrystal simply supported beams under two different stacking sequences
l/L QC1/QC2/QC1 QC2/QC1/QC2 1 2 3 4 1 2 3 4 0 0.264 1 0.796 6 0.996 8 1.551 3 0.175 5 0.553 2 0.679 1 1.008 2 0.015 0.263 9 0.794 8 0.993 8 1.497 3 0.175 1 0.551 4 0.672 6 0.976 8 0.03 0.263 3 0.787 0 0.985 6 1.087 7 0.173 8 0.545 4 0.653 6 0.860 2 表 4 均匀准晶简支梁的临界屈曲载荷(Ncr)
Table 4. Critical buckling loads (Ncr) of the homogenous simply supported beam
h/L 0.1 0.05 0.02 present results 10.091 1 10.336 0 10.406 6 exact solutions[24] 10.090 0 10.340 0 10.410 0 表 5 两种叠层顺序下纳米准晶层合简支梁的临界屈曲载荷(Ncr)
Table 5. Critical buckling loads (Ncr) of nano-quasicrystal layered simply supported beams under two different stacking sequences
h/L QC1/QC2/QC1 QC2/QC1/QC2 h/L=0.1 h/L=0.15 h/L=0.2 h/L=0.1 h/L=0.15 h/L=0.2 0 7.068 0×10-3 1.512 79×10-2 2.520 23×10-2 3.123 3×10-3 6.848 0×10-3 1.176 00×10-2 0.015 7.057 4×10-3 1.510 49×10-2 2.516 37×10-2 3.107 9×10-3 6.815 2×10-3 1.170 49×10-2 0.03 7.026 3×10-3 1.503 79×10-2 2.505 06×10-2 3.062 8×10-3 6.717 7×10-3 1.154 15×10-2 -
[1] SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951 [2] 胡承正, 杨文革, 王仁卉, 等. 准晶的对称性和物理性质[J]. 物理学进展, 1997, 17(4): 345-375. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ704.000.htmHU Chengzheng, YANG Wenge, WANG Renhui, et al. Quasicrystal symmetry and physical properties[J]. Progress in Physics, 1997, 17(4): 345-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ704.000.htm [3] 高媛媛, 刘官厅. 一维正交准晶中具有四条裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2019, 40(2): 210-222. doi: 10.21656/1000-0887.390032GAO Yuanyuan, LIU Guanting. Analytical solutions to problems of elliptical holes with 4 edge cracks in 1D orthorhombic quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(2): 210-222. (in Chinese) doi: 10.21656/1000-0887.390032 [4] 李志强, 徐洲, 李小平, 等. 准晶材料的应用研究进展[J]. 材料导报, 2002, 16(2): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200202003.htmLI Zhiqiang, XU Zhou, LI Xiaoping, et al. Progress in research on application of quasicrystalline materials[J]. Materials Reports, 2002, 16(2): 9-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200202003.htm [5] 胡克强, 高存法, 付佳维, 等. 无限大压电准晶介质中两个圆柱夹杂的干涉作用[J]. 内蒙古工业大学学报, 2023, 42(3): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303006.htmHU Keqiang, GAO Cunfa, FU Jiawei, et al. Interference of two cylindrical inclusions in an infinite piezoelectric quasicrystal medium[J]. Journal of Inner Mongolia University of Technology, 2023, 42(3): 230-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303006.htm [6] GADIYAR C, LOIUDICE A, D'AMBRA F, et al. Nanocrystals as precursors in solid-state reactions for size- and shape-controlled polyelemental nanomaterials[J]. Journal of the American Chemical Society, 2020, 142(37): 15931-15940. doi: 10.1021/jacs.0c06556 [7] 郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007, 28(8): 949-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200708007.htmGUO Lihui, FAN Tianyou. Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200708007.htm [8] BARUA P, MURTY B S, SRINIVAS V. Mechanical alloying of Al-Cu-Fe elemental powders[J]. Materials Science and Engineering A, 2001, 304(1/2): 863-866. [9] SINGH A, OSAWA Y, SOMEKAWA H, et al. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg-Zn-Y alloys containing quasicrystal phase[J]. Scripta Materialia, 2011, 64(7): 661-664. doi: 10.1016/j.scriptamat.2010.12.016 [10] WANG H T, GUO J H, JIANG X, et al. Bending and vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interface[J]. Acta Mechanica, 2022, 233(10): 4029-4046. doi: 10.1007/s00707-022-03318-z [11] 魏悦广. 机械微型化所面临的科学难题-尺度效应[J]. 世界科技研究与发展, 2000, 22(2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200002018.htmWEI Yueguang. Size effect, a hard topic for machine-miniaturization[J]. World Sci-Tech R & D, 2000, 22(2): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200002018.htm [12] MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448. doi: 10.1007/BF00253946 [13] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710. doi: 10.1063/1.332803 [14] AIFANTIS E C. Strain gradient interpretation of size effects[J]. International Journal of Fracture, 1999, 95(1/4): 299-314. doi: 10.1023/A:1018625006804 [15] WAKSMANSKI N, PAN E. Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates[J]. Journal of Vibration and Acoustics, 2017, 139(2): 021006. doi: 10.1115/1.4035106 [16] LI Y, YANG L Z, ZHANG L L, et al. Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading[J]. Acta Mechanica, 2018, 229(8): 3501-3515. doi: 10.1007/s00707-018-2177-4 [17] ZHANG L, GUO J H, XING Y M. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect[J]. International Journal of Solids and Structures, 2018, 132/133: 278-302. doi: 10.1016/j.ijsolstr.2017.10.020 [18] SUN T Y, GUO J H, PAN E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Applied Mathematics and Mechanics, 2021, 42(8): 1077-1094. doi: 10.1007/s10483-021-2743-6 [19] GUO J H, ZHANG M, CHEN W Q, et al. Free and forced vibration of layered one-dimensional quasicrystal nanoplates with modified couple-stress effect[J]. Science China: Physics, Mechanics & Astronomy, 2020, 63(7): 124-125. [20] ZHANG L, GUO J H, XING Y M. Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory[J]. Acta Mechanica Solida Sinica, 2021, 34(2): 237-251. doi: 10.1007/s10338-020-00204-w [21] HUANG Y Z, CHEN J, ZHAO M, et al. Electromechanical coupling characteristics of double-layer piezoelectric quasicrystal actuators[J]. International Journal of Mechanical Sciences, 2021, 196(8): 106293. [22] LI Y S, XIAO T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory[J]. Applied Mathematical Modelling, 2021, 96: 733-750. doi: 10.1016/j.apm.2021.03.028 [23] SUN T Y, GUO J H. Free vibration and bending of one-dimensional quasicrystal layered composite beams by using the state space and differential quadrature approach[J]. Acta Mechanica, 2022, 233(8): 3035-3057. doi: 10.1007/s00707-022-03270-y [24] 陈韬, 郭俊宏, 田园. 一维六方准晶层合简支梁自由振动与屈曲的精确解[J]. 固体力学学报, 2023, 44(1): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202301008.htmCHEN Tao, GUO Junhong, TIAN Yuan. Exact solution of free vibration and buckling of one-dimensional hexagonal simply-supported and layered quasicrystal beams[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 109-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202301008.htm [25] MAHDAVI M H, FARSHIDAINFAR A, TAHANI M, et al. A more comprehensive modeling of atomic force microscope cantilever[J]. Ultramicroscopy, 2008, 109(1): 54-60. doi: 10.1016/j.ultramic.2008.08.003 [26] ZHANG J H, CHENG Z W, DONG J J, et al. Cascaded nanobeam spectrometer with high resolution and scalability[J]. Optica, 2022, 9(5): 517-521. doi: 10.1364/OPTICA.453483 [27] HUANG Q Y, LOVERIDGE M J, GENIESER R, et al. Electrochemical evaluation and phase-related impedance studies on silicon-few layer graphene (FLG) composite electrode systems[J]. Scientific Reports, 2018, 8(1): 1386. doi: 10.1038/s41598-018-19929-3 [28] 马文赛, 刘方浩, 李东霄, 等. 特殊对称铺设复合材料层合矩形板的全局动力学研究[J]. 内蒙古工业大学学报, 2023, 42(2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202302003.htmMA Wensai, LIU Fanghao, LI Dongxiao, et al. Global dynamics of a special symmetrically laid composite laminated rectangular plate[J]. Journal of Inner Mongolia University of Technology, 2023, 42(2): 109-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202302003.htm [29] 娄阁, 陈思. 三维针织/机织混合聚氨酯基复合材料的压缩性能研究[J]. 内蒙古工业大学学报, 2023, 42(3): 252-256. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303009.htmLOU Ge, CHEN Si. Compression properties of three-dimensional knitted/woven hybrid polyurethane matrix composites[J]. Journal of Inner Mongolia University of Technology, 2023, 42(3): 252-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303009.htm [30] CHANG S Y, CHEN B J, HSIAO Y T, et al. Preparation and nanoscopic plastic deformation of toughened Al-Cu-Fe-based quasicrystal/vanadium multilayered coatings[J]. Materials Chemistry and Physics, 2018, 213: 277-284. doi: 10.1016/j.matchemphys.2018.04.045 [31] GUO J H, SUN T Y, PAN E. Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium[J]. International Journal of Solids and Structures, 2020, 185: 272-280. [32] LIU H, PAN E, CAI Y C. General surface loading over layered transversely isotropic pavements with imperfect interfaces[J]. Advances in Engineering Software, 2018, 115: 268-282. doi: 10.1016/j.advengsoft.2017.09.009 [33] FENG X, FAN X Y, LI Y, et al. Static response and free vibration analysis for cubic quasicrystal laminates with imperfect interfaces[J]. European Journal of Mechanics A: Solids, 2021, 90(14): 104365. [34] WANG Q, WANG C M. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes[J]. Nanotechnology, 2007, 18(7): 075702. doi: 10.1088/0957-4484/18/7/075702