留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究

原庆丹 郭俊宏

原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260
引用本文: 原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260
YUAN Qingdan, GUO Junhong. Nonlocal Vibration, Buckling and Bending of 1D Layered Quasicrystal Nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260
Citation: YUAN Qingdan, GUO Junhong. Nonlocal Vibration, Buckling and Bending of 1D Layered Quasicrystal Nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260

一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究

doi: 10.21656/1000-0887.440260
基金项目: 

国家自然科学基金 12072166

内蒙古自治区科技计划项目 2021GG0254

内蒙古自治区直属高校基本科研业务费 JY20220075

详细信息
    作者简介:

    原庆丹(1999—),女,硕士生(E-mail: 783694647@qq.com)

    通讯作者:

    郭俊宏(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: jhguo@imut.edu.cn)

  • 中图分类号: O343

Nonlocal Vibration, Buckling and Bending of 1D Layered Quasicrystal Nanobeams

  • 摘要: 基于非局部理论,建立了一维纳米准晶层合简支深梁模型,研究了其自由振动、屈曲行为及其弯曲变形问题. 采用伪Stroh型公式,导出了纳米梁的控制方程,并通过传递矩阵法获得简支边界条件下纳米准晶层合梁固有频率、临界屈曲载荷及弯曲变形广义位移和广义应力的精确解. 通过数值算例,分析了高跨比、层厚比、叠层顺序及非局部效应对一维纳米准晶层合简支梁固有频率、临界屈曲载荷和弯曲变形的影响. 结果表明:固有频率和临界屈曲载荷随着非局部参数增大而减小;外层准晶弹性常数更高时,固有频率和临界屈曲载荷更大;叠层顺序对纳米准晶梁的力学行为有较大影响. 所得的精确解可为纳米尺度下梁结构的各种数值方法和实验结果提供参考.
  • 图  1  一维纳米准晶层合二维简支梁模型

    Figure  1.  A 2D layered simply-supported beam for 1D nano-quasicrystals

    图  2  两种叠层顺序下准晶层合简支梁的第一阶固有频率随h/L的变化

    Figure  2.  Variations of the 1st-order natural frequency of quasicrystal layered simply supported beams with h/L under two different stacking sequences

    图  3  两种叠层顺序下准晶层合简支梁的第一阶固有频率随h1/h2的变化

    Figure  3.  Variations of the 1st-order natural frequency of quasicrystal layered simply supported beams with h1/h2 under two different stacking sequences

    图  4  不同非局部参数下准晶层合简支梁一阶模态沿厚度方向的变化

    Figure  4.  Variations of the 1st mode shape of quasicrystal layered simply supported beams along the thickness direction under different nonlocal parameters

    图  5  两种纳米准晶层合简支梁的临界屈曲载荷随高跨比h/L的变化

    Figure  5.  Variations of the critical buckling loads of nano-quasicrystal layered simply supported beams with h/L

    图  6  两种纳米准晶层合简支梁的临界屈曲载荷随层厚比h1/h2的变化

    Figure  6.  Variations of the critical buckling loads of nano-quasicrystal layered simply supported beams with h1/h2

    图  7  声子场位移u3和相位子场位移w3沿层合梁厚度方向的变化

    Figure  7.  Variations of phonon displacement u3 and phason displacement w3 along the thickness direction of layered beams

    图  8  相位子场应力沿层合梁厚度方向的变化

    Figure  8.  Variations of the phason stress along the thickness direction of layered beams

    表  1  Al-Ni-Co准晶(QC1)和QC2的材料系数

    Table  1.   Material properties of Al-Ni-Co quasicrystals QC1 and QC2

    C11/(109 N/m2) C13/(109 N/m2) C33/(109 N/m2) C44/(109 N/m2) R1/(109 N/m2)
    QC1 234.33 66.63 232.22 70.19 8.846
    QC2 150 90 130 50 1.5
    R2=R3/(109 N/m2) K1/(109 N/m2) K2/(109 N/m2) ρ/(103 kg/m3)
    QC1 8.846 122 24 4.186
    QC2 1.2 0.3 0.18 4.186
    下载: 导出CSV

    表  2  准晶均匀简支梁的前四阶固有频率

    Table  2.   The first four natural frequencies of the quasicrystal homogenous simply supported beam

    h/L mode present frequency SSDQM[23] Stroh formula[24]
    0.1 1 0.267 7 0.267 6 0.267 2
    2 0.982 3 0.982 3 0.982 3
    3 1.016 4 1.014 7 1.014 7
    4 1.968 7 1.968 7 1.968 7
    0.15 1 0.392 7 0.392 3 0.392 6
    2 0.983 1 0.983 1 0.983 1
    3 1.412 1 1.407 9 1.412 1
    4 1.979 0 7.978 8 1.979 0
    0.2 1 0.508 2 0.507 4 0.508 2
    2 0.984 4 0.984 4 0.984 4
    3 1.707 3 1.700 7 1.707 3
    4 2.009 8 2.008 3 2.009 8
    下载: 导出CSV

    表  3  两种叠层顺序下准晶简支梁的前四阶固有频率

    Table  3.   The first four natural frequencies of quasicrystal simply supported beams under two different stacking sequences

    l/L QC1/QC2/QC1 QC2/QC1/QC2
    1 2 3 4 1 2 3 4
    0 0.264 1 0.796 6 0.996 8 1.551 3 0.175 5 0.553 2 0.679 1 1.008 2
    0.015 0.263 9 0.794 8 0.993 8 1.497 3 0.175 1 0.551 4 0.672 6 0.976 8
    0.03 0.263 3 0.787 0 0.985 6 1.087 7 0.173 8 0.545 4 0.653 6 0.860 2
    下载: 导出CSV

    表  4  均匀准晶简支梁的临界屈曲载荷(Ncr)

    Table  4.   Critical buckling loads (Ncr) of the homogenous simply supported beam

    h/L 0.1 0.05 0.02
    present results 10.091 1 10.336 0 10.406 6
    exact solutions[24] 10.090 0 10.340 0 10.410 0
    下载: 导出CSV

    表  5  两种叠层顺序下纳米准晶层合简支梁的临界屈曲载荷(Ncr)

    Table  5.   Critical buckling loads (Ncr) of nano-quasicrystal layered simply supported beams under two different stacking sequences

    h/L QC1/QC2/QC1 QC2/QC1/QC2
    h/L=0.1 h/L=0.15 h/L=0.2 h/L=0.1 h/L=0.15 h/L=0.2
    0 7.068 0×10-3 1.512 79×10-2 2.520 23×10-2 3.123 3×10-3 6.848 0×10-3 1.176 00×10-2
    0.015 7.057 4×10-3 1.510 49×10-2 2.516 37×10-2 3.107 9×10-3 6.815 2×10-3 1.170 49×10-2
    0.03 7.026 3×10-3 1.503 79×10-2 2.505 06×10-2 3.062 8×10-3 6.717 7×10-3 1.154 15×10-2
    下载: 导出CSV
  • [1] SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951
    [2] 胡承正, 杨文革, 王仁卉, 等. 准晶的对称性和物理性质[J]. 物理学进展, 1997, 17(4): 345-375. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ704.000.htm

    HU Chengzheng, YANG Wenge, WANG Renhui, et al. Quasicrystal symmetry and physical properties[J]. Progress in Physics, 1997, 17(4): 345-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ704.000.htm
    [3] 高媛媛, 刘官厅. 一维正交准晶中具有四条裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2019, 40(2): 210-222. doi: 10.21656/1000-0887.390032

    GAO Yuanyuan, LIU Guanting. Analytical solutions to problems of elliptical holes with 4 edge cracks in 1D orthorhombic quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(2): 210-222. (in Chinese) doi: 10.21656/1000-0887.390032
    [4] 李志强, 徐洲, 李小平, 等. 准晶材料的应用研究进展[J]. 材料导报, 2002, 16(2): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200202003.htm

    LI Zhiqiang, XU Zhou, LI Xiaoping, et al. Progress in research on application of quasicrystalline materials[J]. Materials Reports, 2002, 16(2): 9-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200202003.htm
    [5] 胡克强, 高存法, 付佳维, 等. 无限大压电准晶介质中两个圆柱夹杂的干涉作用[J]. 内蒙古工业大学学报, 2023, 42(3): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303006.htm

    HU Keqiang, GAO Cunfa, FU Jiawei, et al. Interference of two cylindrical inclusions in an infinite piezoelectric quasicrystal medium[J]. Journal of Inner Mongolia University of Technology, 2023, 42(3): 230-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303006.htm
    [6] GADIYAR C, LOIUDICE A, D'AMBRA F, et al. Nanocrystals as precursors in solid-state reactions for size- and shape-controlled polyelemental nanomaterials[J]. Journal of the American Chemical Society, 2020, 142(37): 15931-15940. doi: 10.1021/jacs.0c06556
    [7] 郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007, 28(8): 949-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200708007.htm

    GUO Lihui, FAN Tianyou. Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200708007.htm
    [8] BARUA P, MURTY B S, SRINIVAS V. Mechanical alloying of Al-Cu-Fe elemental powders[J]. Materials Science and Engineering A, 2001, 304(1/2): 863-866.
    [9] SINGH A, OSAWA Y, SOMEKAWA H, et al. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg-Zn-Y alloys containing quasicrystal phase[J]. Scripta Materialia, 2011, 64(7): 661-664. doi: 10.1016/j.scriptamat.2010.12.016
    [10] WANG H T, GUO J H, JIANG X, et al. Bending and vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interface[J]. Acta Mechanica, 2022, 233(10): 4029-4046. doi: 10.1007/s00707-022-03318-z
    [11] 魏悦广. 机械微型化所面临的科学难题-尺度效应[J]. 世界科技研究与发展, 2000, 22(2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200002018.htm

    WEI Yueguang. Size effect, a hard topic for machine-miniaturization[J]. World Sci-Tech R & D, 2000, 22(2): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200002018.htm
    [12] MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448. doi: 10.1007/BF00253946
    [13] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710. doi: 10.1063/1.332803
    [14] AIFANTIS E C. Strain gradient interpretation of size effects[J]. International Journal of Fracture, 1999, 95(1/4): 299-314. doi: 10.1023/A:1018625006804
    [15] WAKSMANSKI N, PAN E. Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates[J]. Journal of Vibration and Acoustics, 2017, 139(2): 021006. doi: 10.1115/1.4035106
    [16] LI Y, YANG L Z, ZHANG L L, et al. Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading[J]. Acta Mechanica, 2018, 229(8): 3501-3515. doi: 10.1007/s00707-018-2177-4
    [17] ZHANG L, GUO J H, XING Y M. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect[J]. International Journal of Solids and Structures, 2018, 132/133: 278-302. doi: 10.1016/j.ijsolstr.2017.10.020
    [18] SUN T Y, GUO J H, PAN E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Applied Mathematics and Mechanics, 2021, 42(8): 1077-1094. doi: 10.1007/s10483-021-2743-6
    [19] GUO J H, ZHANG M, CHEN W Q, et al. Free and forced vibration of layered one-dimensional quasicrystal nanoplates with modified couple-stress effect[J]. Science China: Physics, Mechanics & Astronomy, 2020, 63(7): 124-125.
    [20] ZHANG L, GUO J H, XING Y M. Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory[J]. Acta Mechanica Solida Sinica, 2021, 34(2): 237-251. doi: 10.1007/s10338-020-00204-w
    [21] HUANG Y Z, CHEN J, ZHAO M, et al. Electromechanical coupling characteristics of double-layer piezoelectric quasicrystal actuators[J]. International Journal of Mechanical Sciences, 2021, 196(8): 106293.
    [22] LI Y S, XIAO T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory[J]. Applied Mathematical Modelling, 2021, 96: 733-750. doi: 10.1016/j.apm.2021.03.028
    [23] SUN T Y, GUO J H. Free vibration and bending of one-dimensional quasicrystal layered composite beams by using the state space and differential quadrature approach[J]. Acta Mechanica, 2022, 233(8): 3035-3057. doi: 10.1007/s00707-022-03270-y
    [24] 陈韬, 郭俊宏, 田园. 一维六方准晶层合简支梁自由振动与屈曲的精确解[J]. 固体力学学报, 2023, 44(1): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202301008.htm

    CHEN Tao, GUO Junhong, TIAN Yuan. Exact solution of free vibration and buckling of one-dimensional hexagonal simply-supported and layered quasicrystal beams[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 109-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202301008.htm
    [25] MAHDAVI M H, FARSHIDAINFAR A, TAHANI M, et al. A more comprehensive modeling of atomic force microscope cantilever[J]. Ultramicroscopy, 2008, 109(1): 54-60. doi: 10.1016/j.ultramic.2008.08.003
    [26] ZHANG J H, CHENG Z W, DONG J J, et al. Cascaded nanobeam spectrometer with high resolution and scalability[J]. Optica, 2022, 9(5): 517-521. doi: 10.1364/OPTICA.453483
    [27] HUANG Q Y, LOVERIDGE M J, GENIESER R, et al. Electrochemical evaluation and phase-related impedance studies on silicon-few layer graphene (FLG) composite electrode systems[J]. Scientific Reports, 2018, 8(1): 1386. doi: 10.1038/s41598-018-19929-3
    [28] 马文赛, 刘方浩, 李东霄, 等. 特殊对称铺设复合材料层合矩形板的全局动力学研究[J]. 内蒙古工业大学学报, 2023, 42(2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202302003.htm

    MA Wensai, LIU Fanghao, LI Dongxiao, et al. Global dynamics of a special symmetrically laid composite laminated rectangular plate[J]. Journal of Inner Mongolia University of Technology, 2023, 42(2): 109-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202302003.htm
    [29] 娄阁, 陈思. 三维针织/机织混合聚氨酯基复合材料的压缩性能研究[J]. 内蒙古工业大学学报, 2023, 42(3): 252-256. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303009.htm

    LOU Ge, CHEN Si. Compression properties of three-dimensional knitted/woven hybrid polyurethane matrix composites[J]. Journal of Inner Mongolia University of Technology, 2023, 42(3): 252-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD202303009.htm
    [30] CHANG S Y, CHEN B J, HSIAO Y T, et al. Preparation and nanoscopic plastic deformation of toughened Al-Cu-Fe-based quasicrystal/vanadium multilayered coatings[J]. Materials Chemistry and Physics, 2018, 213: 277-284. doi: 10.1016/j.matchemphys.2018.04.045
    [31] GUO J H, SUN T Y, PAN E. Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium[J]. International Journal of Solids and Structures, 2020, 185: 272-280.
    [32] LIU H, PAN E, CAI Y C. General surface loading over layered transversely isotropic pavements with imperfect interfaces[J]. Advances in Engineering Software, 2018, 115: 268-282. doi: 10.1016/j.advengsoft.2017.09.009
    [33] FENG X, FAN X Y, LI Y, et al. Static response and free vibration analysis for cubic quasicrystal laminates with imperfect interfaces[J]. European Journal of Mechanics A: Solids, 2021, 90(14): 104365.
    [34] WANG Q, WANG C M. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes[J]. Nanotechnology, 2007, 18(7): 075702. doi: 10.1088/0957-4484/18/7/075702
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  96
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-20
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回