留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在有一级化学反应时粘弹性流体流经无限竖直多孔平板时的边界层流动

R·A·丹赛 B·B·A·善纳可

R·A·丹赛, B·B·A·善纳可. 在有一级化学反应时粘弹性流体流经无限竖直多孔平板时的边界层流动[J]. 应用数学和力学, 2010, 31(8): 909-916. doi: 10.3879/j.issn.1000-0887.2010.08.003
引用本文: R·A·丹赛, B·B·A·善纳可. 在有一级化学反应时粘弹性流体流经无限竖直多孔平板时的边界层流动[J]. 应用数学和力学, 2010, 31(8): 909-916. doi: 10.3879/j.issn.1000-0887.2010.08.003
Rebhi A. Damseh, Ben Bella A. Shannak. Visco-Elastic Fluid Flow Past an Infinite Vertical Porous Plate in the Presence of First Order Chemical Reaction[J]. Applied Mathematics and Mechanics, 2010, 31(8): 909-916. doi: 10.3879/j.issn.1000-0887.2010.08.003
Citation: Rebhi A. Damseh, Ben Bella A. Shannak. Visco-Elastic Fluid Flow Past an Infinite Vertical Porous Plate in the Presence of First Order Chemical Reaction[J]. Applied Mathematics and Mechanics, 2010, 31(8): 909-916. doi: 10.3879/j.issn.1000-0887.2010.08.003

在有一级化学反应时粘弹性流体流经无限竖直多孔平板时的边界层流动

doi: 10.3879/j.issn.1000-0887.2010.08.003
详细信息
  • 中图分类号: O357.4

Visco-Elastic Fluid Flow Past an Infinite Vertical Porous Plate in the Presence of First Order Chemical Reaction

  • 摘要: 在有一级化学反应时,研究不可压缩的粘弹性流体,在竖直多孔连续运动平板上的不稳定自然对流.控制方程用隐式有限差分法进行数值求解.与解析解的结果比较,证明所选用的数值方法有效.详细图示了速度分布的数值结果.研究了粘弹性参数、无量纲化学反应参数和平板运动速度,对稳定的速度分布、与时间相关的摩擦因数、Nusselt数和Sherwood数的影响.
  • [1] Sakiadis B C. Boundary layer behavior on continuous solid surfaces—Ⅱ: the boundary layer on a continuous flat surface[J]. Amer Inst Chem Engrg J, 1961, 7(2): 221-225. doi: 10.1002/aic.690070211
    [2] Crane L J. Flow past a stretching plate[J]. Z Angew Math Phys, 1970, 21(4): 445-447.
    [3] Carragher P, Crane L J. Heat transfer on a continuously moving sheet[J]. Z Angew Math Mech, 1982, 62(10): 564-565. doi: 10.1002/zamm.19820621009
    [4] Beard D W, Walters K. Elastico-viscous boundary layer flow—Ⅰ: two dimensional flow near a stagnation point[C]. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1964, 60: 667-674.
    [5] Rajagopal K R. On Stokes’ problem for a non-Newtonian fluid[J]. Acta Mechanica, 1983, 48(3/4): 233-239. doi: 10.1007/BF01170422
    [6] Dandpath B S, Gupta A S. Flow and heat transfer in a viscoelastic fluid over a stretching shell[J]. Int J Non-Linear Mech, 1989, 24(3): 215-219. doi: 10.1016/0020-7462(89)90040-1
    [7] Teipel L. The impulsive motion of a flat plate in a visco-elastic fluid[J]. Acta Mechanica, 1981, 39(3/4): 277-279. doi: 10.1007/BF01170349
    [8] Panda J, Roy J S. Harmonically oscillating visco-elastic boundary layer flow[J]. Acta Mechanica, 1979, 31(3/4): 213-220. doi: 10.1007/BF01176849
    [9] Damseh Rebhi A, Al-Azab Tariq A, Al-Odat M Q. Unsteady free convection flow of visco-elastic fluid on a stretched vertical plate embedded in a non-Darcian porous medium with constant heat flux[J]. Journal of Porous Media, 2008, 11(1): 117-124. doi: 10.1615/JPorMedia.v11.i1.80
    [10] Damseh Rebhi A, Shatanawi A S, Chamkha A J, Duwairi H M. Transient mixed convection flow of a second-grade visco-elastic fluid over a vertical surface[J]. Nonlinear Analysis Modling and Control, 2008, 13(2): 169-179.
    [11] Shawaqfah M S, Damseh R A, Chamkha A J, Duwairi H M, Zgoul M H. Forced convection of blasius flow of “second-grade” vcisco-elastic fluid[J]. International Journal of Heat &Technology, 2007, 25(1): 145-151.
    [12] Chamkha A J. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction[J]. Int Comm Heat and Mass Transfer, 2003, 30(3): 413-422. doi: 10.1016/S0735-1933(03)00059-9
    [13] Kandasamy R, Periasamy K, Prabhu K K Sivagnana. Chemical reaction, heat and Mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects[J]. Int J of Heat and Mass Transfer, 2005, 48(21/22): 4557-4561. doi: 10.1016/j.ijheatmasstransfer.2005.05.006
    [14] Kandasamy R, Periasamy K, Prabhu K K Sivagnana. Effects of chemical reaction, heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection[J]. Int J of Heat and Mass Transfer, 2005, 48(7): 1388-1394. doi: 10.1016/j.ijheatmasstransfer.2004.10.008
    [15] Siddheshwar Pradeep G, Manjunath S. Unsteady convective diffusion with heterogeneous chemical reaction in a plane-poiseuille flow of a micropolar fluid[J]. Int J of Eng Science, 2000, 38(7): 765-783. doi: 10.1016/S0020-7225(99)00040-3
    [16] Mitrovic Bojan M, Papavassiliou Dimitrios V. Effects of a first-order chemical reaction on turbulent mass transfer[J]. Int J of Heat and Mass Transfer, 2004, 47(1): 34-61.
    [17] Chen Zheng, Arce Pedro. An integral-spectral approach for convective-diffusive mass transfer with chemical reaction in Couette flow mathematical formulation and numerical illustrations[J]. Chemical Engineering Journal, 1997, 68(1): 11-27. doi: 10.1016/S1385-8947(97)00049-1
    [18] Muthukumaraswamy R, Ganesan P. Natural convection on a moving isothermal vertical plate with chemical reaction[J]. Journal of Engineering Physics and Thermophysics, 2002, 75(1): 113-119. doi: 10.1023/A:1014826924926
    [19] Muthukumaraswamy R, Ganesan P. Effect of the chemical reaction and injection on flow characteristics in an unsteady upward motion of an isothermal plate[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(4): 665-671. doi: 10.1023/A:1019259932039
    [20] Anjalidevi S P, Kandasamy R. Effects of chemical reaction, heat and mass transfer on laminar flow along a semi infinite horizontal plate[J]. Heat and Mass Transfer, 1999, 35(6): 465-467. doi: 10.1007/s002310050349
    [21] Cortell Rafael. Similarity solutions for flow and heat transfer of a viscoelsatic fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1994, 29(2): 155-161. doi: 10.1016/0020-7462(94)90034-5
    [22] Kyvan S, Hadi H, Seyed T. Stagnation-point flow of upper-convected Maxwell fluids[J]. Int J Non-Linear Mech, 2006, 41(10): 1242-1247. doi: 10.1016/j.ijnonlinmec.2006.08.005
    [23] Anderson J. Computational Fluid Dynamics[M]. Chap 9. New York: McGraw-Hill, 1995.
  • 加载中
计量
  • 文章访问数:  1549
  • HTML全文浏览量:  197
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-05-20
  • 刊出日期:  2010-08-15

目录

    /

    返回文章
    返回