## 留言板

F·A·萨拉马. 热传导率对不同传导参数下幂律非Newton流体流经连续伸展表面时热传导的影响[J]. 应用数学和力学, 2010, 31(8): 917-923. doi: 10.3879/j.issn.1000-0887.2010.08.004
 引用本文: F·A·萨拉马. 热传导率对不同传导参数下幂律非Newton流体流经连续伸展表面时热传导的影响[J]. 应用数学和力学, 2010, 31(8): 917-923.
Faiza A. Salama. Effect of Thermal Conductivity on Heat Transfer for a Power-Law Non-Newtonian Fluid Over a Continuous Stretched Surface With Various Injection Parameter[J]. Applied Mathematics and Mechanics, 2010, 31(8): 917-923. doi: 10.3879/j.issn.1000-0887.2010.08.004
 Citation: Faiza A. Salama. Effect of Thermal Conductivity on Heat Transfer for a Power-Law Non-Newtonian Fluid Over a Continuous Stretched Surface With Various Injection Parameter[J]. Applied Mathematics and Mechanics, 2010, 31(8): 917-923.

• 中图分类号: O357

## Effect of Thermal Conductivity on Heat Transfer for a Power-Law Non-Newtonian Fluid Over a Continuous Stretched Surface With Various Injection Parameter

• 摘要: 在一个具有吸入/吹出功能、幂律变化的伸展表面上，分析了二维稳定非Newton流体的流动．假定热传导率按温度的线性函数变化．将控制方程无量纲化后，用Runge-Kutta法进行数值求解．将该问题的一个特例所得到的一些结果，与以前发表的结果相比较，发现两者有着很好的一致性．考虑两种情况，一种对应着致冷的表面温度，另一种对应着均匀的表面温度．数值结果显示，对上述两种情况，可变热传导参数β,传质参数d和幂律指数n，对温度分布和Nusselt数有着重大的影响．
•  [1] Fox V G, Erickson L E, Fan L T. The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid[J]. A I Ch E J, 1969, 15(3): 327-333. [2] Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal, 1988, 135(2): 568-580. [3] Ahmad N, Mubeen A. Boundary layer flow and heat transfer for the stretching plate with suction[J]. Int Comm Heat Mass Transfer, 1995, 22(6): 895-906. [4] Ali M E. On thermal boundary layer on a power-law stretched surface with suction or injection[J]. Int J Heat and Fluid Flow, 1995, 16(4): 280-290. [5] Hassanien A I, Abdullah A A, Gorla R S R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet[J]. Mathematical and Computer Modelling, 1998, 28(9): 105-116. [6] Bourhan Tashtoush, Kodah Z, Al-Gasem A. Heat transfer analysis of a non-Newtonian fluid on a power-law stretched surface with suction or injection for uniform and cooled surface temperature[J]. Int J Numerical Method for Heat & Fluid Flow, 2000, 10(4): 385-396. [7] Herwig H, Wicken G. The effect of variable properties on laminar boundary layer flow[J]. War Stoffubertr, 1986, 20(1): 47-57. [8] Chiam T C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet[J]. Acta Mechanica, 1998, 129(1/2): 63-72. [9] Elbashbeshy E M A. Free convection flow with variable viscosity and thermal diffusivity along a vertical plate in the presence of the magnetic field[J]. Int J Eng Sci, 2000, 38(2): 207-213. [10] Hossain Md Anwar, Munir Md Sazzad, Rees David Andrew S. Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux[J]. Int J Therm Sci, 2000, 39(6): 635-644. [11] Datti P S, Prasad K V, Subhas Abel M, Ambuja Joshi. MHD visco-elastic fluid flow over a non-isothermal stretching sheet[J]. Int J Eng Sci, 2004, 42(8/9): 935-946. [12] Salem A M. The influence of thermal conductivity and variable viscosity on the flow of a micropolar fluid past a continuously semi-infinite moving plate with suction or injection[J]. Il Nuovo Cimentio, B, 2006, 121(1): 35-42. [13] Seddeek M A, Salama F A. Effects of temperature dependent viscosity and thermal conductivity on unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction[J]. Computational Material Science, 2007, 40(2):186-192. [14] Chiam T C. Heat transfer with variable thermal conductivity in a stagnation-point flow towards stretching sheet[J]. Int Commun Heat Mass Transfer, 1996, 23(2): 239-248. [15] Adams J K, Rogers D F. Computer-Aided Heat Transfer Analysis[M]. New York: McGraw-Hill, 1973.
##### 计量
• 文章访问数:  1443
• HTML全文浏览量:  105
• PDF下载量:  873
• 被引次数: 0
##### 出版历程
• 收稿日期:  1900-01-01
• 修回日期:  2010-05-18
• 刊出日期:  2010-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈