## 留言板

 引用本文: 秦朝红, 陈予恕. 多频激励下Duffing vanderPol系统的两参数分岔分析[J]. 应用数学和力学, 2010, 31(8): 971-978.
QIN Zhao-hong, CHEN Yu-shu. Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations[J]. Applied Mathematics and Mechanics, 2010, 31(8): 971-978. doi: 10.3879/j.issn.1000-0887.2010.08.009
 Citation: QIN Zhao-hong, CHEN Yu-shu. Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations[J]. Applied Mathematics and Mechanics, 2010, 31(8): 971-978.

• 中图分类号: O322

## Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations

• 摘要: 研究了含有两个分岔参数的多频激励下Duffing-van der Pol系统的分岔特性．分3种情况进行了讨论：情形1 将λ1看成分岔参数；情形2 将λ2看成分岔参数；情形3)将λ1和λ2都看成分岔参数．根据转迁集的定义，不同的情况下，整个参数空间都被分成了若干个不同的区域，得到了各个参数空间上系统的分岔图，从而为该类系统的参数优化控制奠定了基础．
•  [1] Nafyeh A H, Mook D L. Nonlinear Oscillations[M]. New York: Wiley Interscience, 1979: 325-328. [2] Lim C W, Wu B S. A new analytical approach to the Duffing-harmonic oscillator [J]. Physics Letters A, 2003, 311(4/5): 365-373. [3] Hu H, Tang J H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance [J]. Journal of Sound and Vibration, 2006, 294(3): 637-639. [4] Lim C W, Wu B S, Sun W P. Higher accuracy analytical approximations to the Duffing-harmonic oscillator [J]. Journal of Sound and Vibration, 2006, 296(4/5): 1039-1045. [5] Rand R H, Holmes P J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators [J]. International Journal of Non-Linear Mechanics, 1980, 15(4/5): 387-399. [6] Mettin R, Parlitz U, Lauterborn W. Bifurcation structure of the driven van der Pol oscillator [J]. International Journal of Bifurcation and Chaos, 1993, 3(6): 1592-1555. [7] Wirkus S, Rand R. The dynamics of two coupled van der Pol oscillators with delay coupling [J]. Nonlinear Dynamics, 2004, 30(3): 205-221. [8] Acunto M D. Determination of limit cycles for a modified van der Pol oscillator [J]. Mechanics Research Communications, 2006, 33(1): 93-98. [9] 陈予恕. 非线性振动 [M]. 北京: 高等教育出版社, 2002: 201-208. [10] Woafo P, Chedjou J C, Fotsin H B. Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator [J]. Physical Review E, 1996, 54: 5929-5934. [11] Ji J C, Hansen C H. Stability and dynamics of a controlled van der Pol-Duffing oscillator [J]. Chaos, Solutions & Fractals, 2006, 28(2): 555-570. [12] Jing Z J, Yang Z Y, Jiang T. Complex dynamics in Duffing-Van der Pol equation [J]. Chaos, Solutions & Fractals, 2006, 27(3): 722-747. [13] Holmes P, Rand D. Phase portraits and bifurcation of nonlinear oscillator: x+(α+γx2)+βx+δx3=0[J]. International Journal of Nonlinear Mechanics, 1980, 15(6): 449-458. [14] Maccari Attilio. Approximate solution of a class of nonlinear oscillatiors in resonance with a periodic excitation [J]. Nonlinear Dynamics, 1998, 15(4): 329-343. [15] 董建宁, 申永军, 杨绍普. 多频激励作用下Duffing-van der Pol系统的分岔分析 [J]. 石家庄铁道学院学报, 2006, 19(1): 62-66. [16] Golubistky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory[M]. VolⅠ,Ⅱ. New York: Spring-Verlag, 1985,1988. [17] Qin Z H, Chen Y S. Singular analysis of bifurcation systems with two parameters [J]. Acta Mechanica Sinica, 2010, 26(3): 501-507. [18] Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering[M]. London: Springer, 1998.

##### 计量
• 文章访问数:  1856
• HTML全文浏览量:  202
• PDF下载量:  805
• 被引次数: 0
##### 出版历程
• 收稿日期:  1900-01-01
• 修回日期:  2010-05-29
• 刊出日期:  2010-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈