留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多频激励下Duffing vanderPol系统的两参数分岔分析

秦朝红 陈予恕

秦朝红, 陈予恕. 多频激励下Duffing vanderPol系统的两参数分岔分析[J]. 应用数学和力学, 2010, 31(8): 971-978. doi: 10.3879/j.issn.1000-0887.2010.08.009
引用本文: 秦朝红, 陈予恕. 多频激励下Duffing vanderPol系统的两参数分岔分析[J]. 应用数学和力学, 2010, 31(8): 971-978. doi: 10.3879/j.issn.1000-0887.2010.08.009
QIN Zhao-hong, CHEN Yu-shu. Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations[J]. Applied Mathematics and Mechanics, 2010, 31(8): 971-978. doi: 10.3879/j.issn.1000-0887.2010.08.009
Citation: QIN Zhao-hong, CHEN Yu-shu. Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations[J]. Applied Mathematics and Mechanics, 2010, 31(8): 971-978. doi: 10.3879/j.issn.1000-0887.2010.08.009

多频激励下Duffing vanderPol系统的两参数分岔分析

doi: 10.3879/j.issn.1000-0887.2010.08.009
基金项目: 国家自然科学基金(重点)资助项目(10632040)
详细信息
    作者简介:

    秦朝红(1979- ),女,山东人,博士生(联系人.E-mai:lzhh-qin@163.com).

  • 中图分类号: O322

Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations

  • 摘要: 研究了含有两个分岔参数的多频激励下Duffing-van der Pol系统的分岔特性.分3种情况进行了讨论:情形1 将λ1看成分岔参数;情形2 将λ2看成分岔参数;情形3)将λ1和λ2都看成分岔参数.根据转迁集的定义,不同的情况下,整个参数空间都被分成了若干个不同的区域,得到了各个参数空间上系统的分岔图,从而为该类系统的参数优化控制奠定了基础.
  • [1] Nafyeh A H, Mook D L. Nonlinear Oscillations[M]. New York: Wiley Interscience, 1979: 325-328.
    [2] Lim C W, Wu B S. A new analytical approach to the Duffing-harmonic oscillator [J]. Physics Letters A, 2003, 311(4/5): 365-373. doi: 10.1016/S0375-9601(03)00513-9
    [3] Hu H, Tang J H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance [J]. Journal of Sound and Vibration, 2006, 294(3): 637-639. doi: 10.1016/j.jsv.2005.12.025
    [4] Lim C W, Wu B S, Sun W P. Higher accuracy analytical approximations to the Duffing-harmonic oscillator [J]. Journal of Sound and Vibration, 2006, 296(4/5): 1039-1045. doi: 10.1016/j.jsv.2006.02.020
    [5] Rand R H, Holmes P J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators [J]. International Journal of Non-Linear Mechanics, 1980, 15(4/5): 387-399. doi: 10.1016/0020-7462(80)90024-4
    [6] Mettin R, Parlitz U, Lauterborn W. Bifurcation structure of the driven van der Pol oscillator [J]. International Journal of Bifurcation and Chaos, 1993, 3(6): 1592-1555.
    [7] Wirkus S, Rand R. The dynamics of two coupled van der Pol oscillators with delay coupling [J]. Nonlinear Dynamics, 2004, 30(3): 205-221.
    [8] Acunto M D. Determination of limit cycles for a modified van der Pol oscillator [J]. Mechanics Research Communications, 2006, 33(1): 93-98. doi: 10.1016/j.mechrescom.2005.06.012
    [9] 陈予恕. 非线性振动 [M]. 北京: 高等教育出版社, 2002: 201-208.
    [10] Woafo P, Chedjou J C, Fotsin H B. Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator [J]. Physical Review E, 1996, 54: 5929-5934. doi: 10.1103/PhysRevE.54.5929
    [11] Ji J C, Hansen C H. Stability and dynamics of a controlled van der Pol-Duffing oscillator [J]. Chaos, Solutions & Fractals, 2006, 28(2): 555-570.
    [12] Jing Z J, Yang Z Y, Jiang T. Complex dynamics in Duffing-Van der Pol equation [J]. Chaos, Solutions & Fractals, 2006, 27(3): 722-747.
    [13] Holmes P, Rand D. Phase portraits and bifurcation of nonlinear oscillator: x+(α+γx2)+βx+δx3=0[J]. International Journal of Nonlinear Mechanics, 1980, 15(6): 449-458. doi: 10.1016/0020-7462(80)90031-1
    [14] Maccari Attilio. Approximate solution of a class of nonlinear oscillatiors in resonance with a periodic excitation [J]. Nonlinear Dynamics, 1998, 15(4): 329-343. doi: 10.1023/A:1008235820302
    [15] 董建宁, 申永军, 杨绍普. 多频激励作用下Duffing-van der Pol系统的分岔分析 [J]. 石家庄铁道学院学报, 2006, 19(1): 62-66.
    [16] Golubistky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory[M]. VolⅠ,Ⅱ. New York: Spring-Verlag, 1985,1988.
    [17] Qin Z H, Chen Y S. Singular analysis of bifurcation systems with two parameters [J]. Acta Mechanica Sinica, 2010, 26(3): 501-507. doi: 10.1007/s10409-010-0334-7
    [18] Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering[M]. London: Springer, 1998.
  • 加载中
计量
  • 文章访问数:  1856
  • HTML全文浏览量:  202
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-05-29
  • 刊出日期:  2010-08-15

目录

    /

    返回文章
    返回