留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等宽多孔介质壁面管道中磁流体的流动

K·拉马克里希南 K·希艾雷恩德拉

K·拉马克里希南, K·希艾雷恩德拉. 等宽多孔介质壁面管道中磁流体的流动[J]. 应用数学和力学, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003
引用本文: K·拉马克里希南, K·希艾雷恩德拉. 等宽多孔介质壁面管道中磁流体的流动[J]. 应用数学和力学, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003
K. Ramakrishnan, K. Shailendhra. Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003
Citation: K. Ramakrishnan, K. Shailendhra. Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003

等宽多孔介质壁面管道中磁流体的流动

doi: 10.3879/j.issn.1000-0887.2011.07.003
详细信息
  • 中图分类号: O34

Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media

  • 摘要: 研究等宽管道中,磁场、可渗透壁面、Darcy速度和滑动参数,对流体稳定流动的综合影响.假设管道中流动的流体是均匀的、不可压缩的Newton流体.利用Beavers-Joseph滑动边界条件,得到控制方程的解析解.详细地讨论了磁场、可渗透性、Darcy速度和滑动参数对轴向速度、滑动速度和剪应力的影响.可以看出,Hartmann数、Darcy速度、多孔参数和滑动参数,在改变流动方向,进而改变剪应力方面,起着至关重要的作用.
  • [1] Makinde O D. Magneto-hydrodynamic stability of plane-Poiseuille flow using multideck asymptotic techniqe[J]. Mathematical and Computer Modelling, 2003, 37(3): 251-259. doi: 10.1016/S0895-7177(03)00004-9
    [2] Rao A R, Deshikachar K S. MHD oscillatory flow of blood through channels of variable cross section[J]. Int J Engng Sci, 1986, 24(10): 1615-1628. doi: 10.1016/0020-7225(86)90136-9
    [3] Berman A S. Laminar flow in channels with porous walls[J]. J Appl Phys, 1953, 24(9): 1232-1235. doi: 10.1063/1.1721476
    [4] Sellars J R. Laminar flow in channels with porous walls at high suction Reynolds numbers[J]. J Appl Phys, 1955, 26(4): 489-490.
    [5] Yuan S W. Further investigations of laminar flow in channels with porous walls[J]. J Appl Phys, 1956, 27(3): 267-269. doi: 10.1063/1.1722355
    [6] Wallace W E, Pierce C I, Swayer W K. Experiments on the flow of mercury in porous media in a transverse magnetic field[R]. TN23, U7, No.7259. Washington DC: US Bureau of Mines, 1969.
    [7] Rudraiah N, Ramaiah B K, Rajasekhar B M. Hartmann flow over a permeable bed[J]. Int J Engg Sci, 1975, 13(1): 1-24. doi: 10.1016/0020-7225(75)90070-1
    [8] Beavers G S, Joseph D D. Boundary conditions at a naturally permeable wall[J]. J Fluid Mech, 1967, 30(1): 197-207. doi: 10.1017/S0022112067001375
    [9] Richardson S. A model for the boundary condition of a porous material —part 2 [J]. J Fluid Mech, 1971, 49(2): 327-336. doi: 10.1017/S002211207100209X
    [10] Rajasekhar B M. Experimental and theoretical study of flow of fluids past porous media[D]. PhD Thesis. Banglore Univ, 1974.
    [11] Rudraiah N, Veerbhadraiah R. Temperature distribution in Couette flow past a permeable bed[J]. Proc Mathematical Sciences, 1977, 86(6): 537-547.
    [12] Darcy H. Les Fountains Publique De La Ville De Dijon[M]. Delmont, Paris, 1856.
    [13] Van Lankveld M A M. Validation of boundary conditions between a porous medium and a viscous fluid[R]. Report No. WFW 91.071. Eindhoven University of Technology, August, 1991.
    [14] Srivastava A C. Bull[J]. Gauhati University Mathematics Association, 1996, 3:1.
    [15] Singh R, Lawrence L. Influence of slip velocity at a membrane surface on ultra-filtration performance—II: tube flow system[J]. Int J Heat and Mass Transfer, 1979, 22(5): 731-737. doi: 10.1016/0017-9310(79)90120-0
    [16] Pal D, Veerabhadraiah R, Shivakumar P N, Rudraiah N. Longitudinal dispersion of tracer particles in a channel bounded by porous media using slip condition[J]. Int J Math Math Sci, 1984, 7(4): 755-764. doi: 10.1155/S0161171284000788
    [17] Khan M, Hayat T, Wang Y. Slip effects on shearing flows in a porous medium[J]. Acta Mechanica Sinica, 2008, 24(1): 51-59. doi: 10.1007/s10409-007-0123-0
    [18] Makinde O D, Osalusi E. MHD flow in a channel with slip at the permeable boundaries[J]. Rom J Phys, 2006, 51(3): 319-328.
    [19] Ganesh S, Krishnambal S. Magnetohydrodynamic flow of viscous fluid between two parallel porous plates[J]. J Appl Sci, 2006, 6(11): 2420-2425. doi: 10.3923/jas.2006.2420.2425
    [20] Chandrasekhara B D, Rudraiah N. MHD flow through a channel of varying gap[J]. Indian J Pure and Appl Math, 1980, 11(8): 1105-1123.
    [21] Shivakumar P N, Nagaraj S, Veerabhadraiah R, Rudraiah N. Fluid movement in a channel of varying gap with permeable walls covered by porous media[J]. Int J Engng Sci, 1986, 24(4): 479-492. doi: 10.1016/0020-7225(86)90040-6
    [22] Sparrow E M, Cess R D. Magnetohydrodynamic flow and heat transfer about a rotating disc[J]. J Appl Mech, 1962, 29: 181-187. doi: 10.1115/1.3636454
    [23] Roberts P H. An Introduction to Magnetohydrodynamics[M]. London: Longmans Publications, 1967.
    [24] Langlois W F. Creeping viscous flow through a two dimensional channel[J]. Proc Third U S Nat Cong Appl Mech, 1958: 777-783.
  • 加载中
计量
  • 文章访问数:  1837
  • HTML全文浏览量:  229
  • PDF下载量:  784
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-10
  • 修回日期:  1900-01-11
  • 刊出日期:  2011-07-15

目录

    /

    返回文章
    返回