留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Burton-Miller边界积分方程的二维声学波动问题对角形式快速多极子边界元及其应用

吴海军 蒋伟康 刘轶军

吴海军, 蒋伟康, 刘轶军. 基于Burton-Miller边界积分方程的二维声学波动问题对角形式快速多极子边界元及其应用[J]. 应用数学和力学, 2011, 32(8): 920-933. doi: 10.3879/j.issn.1000-0887.2011.08.003
引用本文: 吴海军, 蒋伟康, 刘轶军. 基于Burton-Miller边界积分方程的二维声学波动问题对角形式快速多极子边界元及其应用[J]. 应用数学和力学, 2011, 32(8): 920-933. doi: 10.3879/j.issn.1000-0887.2011.08.003
WU Hai-jun, JIANG Wei-kang, LIU Yi-jun. Diagonal Form Fast Multipole Boundary Element Method for 2D Acoustic Problems Based on Burton-Miller BIE Formulation and Its Applications[J]. Applied Mathematics and Mechanics, 2011, 32(8): 920-933. doi: 10.3879/j.issn.1000-0887.2011.08.003
Citation: WU Hai-jun, JIANG Wei-kang, LIU Yi-jun. Diagonal Form Fast Multipole Boundary Element Method for 2D Acoustic Problems Based on Burton-Miller BIE Formulation and Its Applications[J]. Applied Mathematics and Mechanics, 2011, 32(8): 920-933. doi: 10.3879/j.issn.1000-0887.2011.08.003

基于Burton-Miller边界积分方程的二维声学波动问题对角形式快速多极子边界元及其应用

doi: 10.3879/j.issn.1000-0887.2011.08.003
基金项目: 国家自然科学基金资助项目(11074170)
详细信息
    作者简介:

    吴海军(1984- ),男,安徽宿州人,博士生(E-mail:navy_wu@sjtu.edu.cn);蒋伟康(1961- ),男,上海人,教授,博士,博士生导师(联系人.Tel:+86-21-34206332-824;E-mail:wkjiang@sjtu.edu.cn).

  • 中图分类号: O422;O429

Diagonal Form Fast Multipole Boundary Element Method for 2D Acoustic Problems Based on Burton-Miller BIE Formulation and Its Applications

  • 摘要: 论述了二维声学问题的快速多极子边界元(FMBEM)方程及实现步骤.概述了核函数展开理论,并对FMBEM的4个重要组成部分:源点矩计算、源点矩转移、源点矩至本地展开转移、本地展开转移进行了详细的描述.提出了一种有利于四叉树建立的数据结构.推导了一种比直接数值计算更精确、稳定和高效的解析源点矩计算公式.数值算例验证了FMBEM的正确性和高效性.最后,使用FMBEM对轨道二维声学辐射模型进行了模拟计算.
  • [1] Copley L G. Integral equation method for radiation from vibrating bodies[J]. The Journal of the Acoustical Society of America, 1967, 41(4A):807-816. doi: 10.1121/1.1910410
    [2] Schenck H A. Improved integral formulation for acoustic radiation problems[J]. The Journal of the Acoustical Society of America, 1968, 44(1):41-48. doi: 10.1121/1.1911085
    [3] Meyer W L, Bell W A, Zinn B T, Stallybrass M P. Boundary integral solutions of three dimensional acoustic radiation problems[J]. Journal of Sound and Vibration, 1978, 59(2):245-262. doi: 10.1016/0022-460X(78)90504-7
    [4] Terai T. On calculation of sound fields around three dimensional objects by integral equation methods[J]. Journal of Sound and Vibration, 1980, 69(1):71-100. doi: 10.1016/0022-460X(80)90436-8
    [5] Rokhlin V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics, 1985, 60(2):187-207. doi: 10.1016/0021-9991(85)90002-6
    [6] Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2):325-348. doi: 10.1016/0021-9991(87)90140-9
    [7] Greengard L F. The Rapid Evaluation of Potential Fields in Particle Systems[M]. USA: the MIT Press, 1988.
    [8] Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Journal of Computational Physics, 1990, 86(2):414-439. doi: 10.1016/0021-9991(90)90107-C
    [9] Amini S, Profit A T J. Analysis of a diagonal form of the fast multipole algorithm for scattering theory[J]. BIT Numerical Mathematics, 1999, 39(4):585-602. doi: 10.1023/A:1022331021899
    [10] Amini S, Profit A T J. Multi-level fast multipole solution of the scattering problem[J]. Engineering Analysis With Boundary Elements, 2003, 27(5): 547-564. doi: 10.1016/S0955-7997(02)00161-3
    [11] Chen J T, Chen K H. Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics[J]. Engineering Analysis With Boundary Elements, 2004, 28(6):685-709. doi: 10.1016/S0955-7997(03)00122-X
    [12] Shen L, Liu Y J. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation[J]. Computational Mechanics, 2007, 40(3):461-472. doi: 10.1007/s00466-006-0121-2
    [13] Bapat M S, Shen L, Liu Y J. Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems[J]. Engineering Analysis With Boundary Elements, 2009, 33(8/9):1113-1123. doi: 10.1016/j.enganabound.2009.04.005
    [14] Liu Y J. Fast Multipole Boundary Element Method: Theory and Applications in Engineering[M]. Cambridge: Cambridge University Press, 2009.
    [15] Crutchfield W, Gimbutas Z, Greengard L, Huang J, Rokhlin V, Yarvin N, Zhao J. Remarks on the implementation of wideband FMM for the Helmholtz equation in two dimensions[J]. Contemporary Mathematics, 2006, 408:99-110. doi: 10.1090/conm/408/07689
    [16] Cheng H, Crutchfield W Y, Gimbutas Z, Greengard L F, Ethridge J F, Huang J, Rokhlin V, Yarvin N, Zhao J. A wideband fast multipole method for the Helmholtz equation in three dimensions[J]. Journal of Computational Physics, 2006, 216(1):300-325. doi: 10.1016/j.jcp.2005.12.001
    [17] Gumerov N A, Duraiswami R. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation[J]. The Journal of the Acoustical Society of America, 2009, 125(1):191-205. doi: 10.1121/1.3021297
    [18] Liu Y J, Nishimura N. The fast multipole boundary element method for potential problems: a tutorial[J]. Engineering Analysis With Boundary Elements, 2006, 30(5):371-381. doi: 10.1016/j.enganabound.2005.11.006
    [19] Ciskowski R D, Brebbia C A. Boundary Element Methods in Acoustics [M]. New York: Springer, 1991.
    [20] Burton A J, Miller G F. The application of integral equation methods to the numerical solution of some exterior boundary-value problems[J].Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1971, 323(1553): 201-210. doi: 10.1098/rspa.1971.0097
    [21] Kress R. Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1985, 38(2):323-341. doi: 10.1093/qjmam/38.2.323
    [22] Colton D, Kress R. Integral Equation Methods in Scattering Theory[M]. New York: Wiley, 1983.
    [23] Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables[M]. Washington: US Govt Print Off, 1964.
    [24] Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. doi: 10.1137/0907058
    [25] Sonneveld P. GGS: a fast Lanczos-type solver for nonsymmetric linear systems [J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10:36-52. doi: 10.1137/0910004
    [26] Labreuche C. A convergence theorem for the fast multipole method for 2 dimensional scattering problems[J]. Mathematics of Computation, 1998, 67(222):553-591. doi: 10.1090/S0025-5718-98-00937-5
    [27] Amini S, Profit A. Analysis of the truncation errors in the fast multipole method for scattering problems[J]. Journal of Computational and Applied Mathematics, 2000, 115(1/2):23-33.
    [28] Wu H J, Jiang W K, Liu Y J. Analysis of numerical integration error for Bessel integral identity in fast multipole method for 2D Helmholtz equation[J]. Journal of Shanghai Jiao Tong University (Science), 2010, 15(6):690-693. doi: 10.1007/s12204-010-1070-7
    [29] Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: a pedestrian prescription[J]. Antennas and Propagation Magazine, IEEE, 1993, 35(3):7-12.
    [30] Jakob-Chien R, Alpert B K. A fast spherical filter with uniform resolution[J]. Journal of Computational Physics, 1997, 136(2):580-584. doi: 10.1006/jcph.1997.5782
  • 加载中
计量
  • 文章访问数:  1541
  • HTML全文浏览量:  195
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-10
  • 修回日期:  2011-05-10
  • 刊出日期:  2011-08-15

目录

    /

    返回文章
    返回