[1] |
Copley L G. Integral equation method for radiation from vibrating bodies[J]. The Journal of the Acoustical Society of America, 1967, 41(4A):807-816. doi: 10.1121/1.1910410
|
[2] |
Schenck H A. Improved integral formulation for acoustic radiation problems[J]. The Journal of the Acoustical Society of America, 1968, 44(1):41-48. doi: 10.1121/1.1911085
|
[3] |
Meyer W L, Bell W A, Zinn B T, Stallybrass M P. Boundary integral solutions of three dimensional acoustic radiation problems[J]. Journal of Sound and Vibration, 1978, 59(2):245-262. doi: 10.1016/0022-460X(78)90504-7
|
[4] |
Terai T. On calculation of sound fields around three dimensional objects by integral equation methods[J]. Journal of Sound and Vibration, 1980, 69(1):71-100. doi: 10.1016/0022-460X(80)90436-8
|
[5] |
Rokhlin V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics, 1985, 60(2):187-207. doi: 10.1016/0021-9991(85)90002-6
|
[6] |
Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2):325-348. doi: 10.1016/0021-9991(87)90140-9
|
[7] |
Greengard L F. The Rapid Evaluation of Potential Fields in Particle Systems[M]. USA: the MIT Press, 1988.
|
[8] |
Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Journal of Computational Physics, 1990, 86(2):414-439. doi: 10.1016/0021-9991(90)90107-C
|
[9] |
Amini S, Profit A T J. Analysis of a diagonal form of the fast multipole algorithm for scattering theory[J]. BIT Numerical Mathematics, 1999, 39(4):585-602. doi: 10.1023/A:1022331021899
|
[10] |
Amini S, Profit A T J. Multi-level fast multipole solution of the scattering problem[J]. Engineering Analysis With Boundary Elements, 2003, 27(5): 547-564. doi: 10.1016/S0955-7997(02)00161-3
|
[11] |
Chen J T, Chen K H. Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics[J]. Engineering Analysis With Boundary Elements, 2004, 28(6):685-709. doi: 10.1016/S0955-7997(03)00122-X
|
[12] |
Shen L, Liu Y J. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation[J]. Computational Mechanics, 2007, 40(3):461-472. doi: 10.1007/s00466-006-0121-2
|
[13] |
Bapat M S, Shen L, Liu Y J. Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems[J]. Engineering Analysis With Boundary Elements, 2009, 33(8/9):1113-1123. doi: 10.1016/j.enganabound.2009.04.005
|
[14] |
Liu Y J. Fast Multipole Boundary Element Method: Theory and Applications in Engineering[M]. Cambridge: Cambridge University Press, 2009.
|
[15] |
Crutchfield W, Gimbutas Z, Greengard L, Huang J, Rokhlin V, Yarvin N, Zhao J. Remarks on the implementation of wideband FMM for the Helmholtz equation in two dimensions[J]. Contemporary Mathematics, 2006, 408:99-110. doi: 10.1090/conm/408/07689
|
[16] |
Cheng H, Crutchfield W Y, Gimbutas Z, Greengard L F, Ethridge J F, Huang J, Rokhlin V, Yarvin N, Zhao J. A wideband fast multipole method for the Helmholtz equation in three dimensions[J]. Journal of Computational Physics, 2006, 216(1):300-325. doi: 10.1016/j.jcp.2005.12.001
|
[17] |
Gumerov N A, Duraiswami R. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation[J]. The Journal of the Acoustical Society of America, 2009, 125(1):191-205. doi: 10.1121/1.3021297
|
[18] |
Liu Y J, Nishimura N. The fast multipole boundary element method for potential problems: a tutorial[J]. Engineering Analysis With Boundary Elements, 2006, 30(5):371-381. doi: 10.1016/j.enganabound.2005.11.006
|
[19] |
Ciskowski R D, Brebbia C A. Boundary Element Methods in Acoustics [M]. New York: Springer, 1991.
|
[20] |
Burton A J, Miller G F. The application of integral equation methods to the numerical solution of some exterior boundary-value problems[J].Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1971, 323(1553): 201-210. doi: 10.1098/rspa.1971.0097
|
[21] |
Kress R. Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1985, 38(2):323-341. doi: 10.1093/qjmam/38.2.323
|
[22] |
Colton D, Kress R. Integral Equation Methods in Scattering Theory[M]. New York: Wiley, 1983.
|
[23] |
Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables[M]. Washington: US Govt Print Off, 1964.
|
[24] |
Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. doi: 10.1137/0907058
|
[25] |
Sonneveld P. GGS: a fast Lanczos-type solver for nonsymmetric linear systems [J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10:36-52. doi: 10.1137/0910004
|
[26] |
Labreuche C. A convergence theorem for the fast multipole method for 2 dimensional scattering problems[J]. Mathematics of Computation, 1998, 67(222):553-591. doi: 10.1090/S0025-5718-98-00937-5
|
[27] |
Amini S, Profit A. Analysis of the truncation errors in the fast multipole method for scattering problems[J]. Journal of Computational and Applied Mathematics, 2000, 115(1/2):23-33.
|
[28] |
Wu H J, Jiang W K, Liu Y J. Analysis of numerical integration error for Bessel integral identity in fast multipole method for 2D Helmholtz equation[J]. Journal of Shanghai Jiao Tong University (Science), 2010, 15(6):690-693. doi: 10.1007/s12204-010-1070-7
|
[29] |
Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: a pedestrian prescription[J]. Antennas and Propagation Magazine, IEEE, 1993, 35(3):7-12.
|
[30] |
Jakob-Chien R, Alpert B K. A fast spherical filter with uniform resolution[J]. Journal of Computational Physics, 1997, 136(2):580-584. doi: 10.1006/jcph.1997.5782
|