留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学反应对流过半无限垂直多孔板的粘性耗散非定常磁流体流动的影响

J·A·饶 S·施崴阿赫

J·A·饶, S·施崴阿赫. 化学反应对流过半无限垂直多孔板的粘性耗散非定常磁流体流动的影响[J]. 应用数学和力学, 2011, 32(8): 998-1010. doi: 10.3879/j.issn.1000-0887.2011.08.010
引用本文: J·A·饶, S·施崴阿赫. 化学反应对流过半无限垂直多孔板的粘性耗散非定常磁流体流动的影响[J]. 应用数学和力学, 2011, 32(8): 998-1010. doi: 10.3879/j.issn.1000-0887.2011.08.010
J. A. Rao, S. Shivaiah. Chemical Reaction Effects on an Unsteady MHD Flow Past a Semi-Infinite Vertical Porous Plate With Viscous Dissipation[J]. Applied Mathematics and Mechanics, 2011, 32(8): 998-1010. doi: 10.3879/j.issn.1000-0887.2011.08.010
Citation: J. A. Rao, S. Shivaiah. Chemical Reaction Effects on an Unsteady MHD Flow Past a Semi-Infinite Vertical Porous Plate With Viscous Dissipation[J]. Applied Mathematics and Mechanics, 2011, 32(8): 998-1010. doi: 10.3879/j.issn.1000-0887.2011.08.010

化学反应对流过半无限垂直多孔板的粘性耗散非定常磁流体流动的影响

doi: 10.3879/j.issn.1000-0887.2011.08.010
详细信息
  • 中图分类号: O357.3;O361.3

Chemical Reaction Effects on an Unsteady MHD Flow Past a Semi-Infinite Vertical Porous Plate With Viscous Dissipation

  • 摘要: 分析了化学反应,对流过半无限竖直多孔板的、粘性耗散的、非定常的磁流体流动的影响.利用随时间变化的相似参数,将运动、能量、溶质的控制方程变换为常微分方程,并用有限单元法数值地求解所得到的常微分方程.用图形给出了不同参数对速度、温度和浓度分布的影响,用表格给出了不同物理参数值时,表面摩擦力、Nusselt数和Sherwood数的数值.
  • [1] Levenspiel O. Chemical Reaction Engineering[M]. 3rd ed. New York: Wiley, 1999.
    [2] Chambre P L, Young J D. On the diffusion of a chemically reactive species in a laminar boundary layer flow[J]. The Physics of Fluids, 1958, 1(1): 48-54. doi: 10.1063/1.1724336
    [3] Dekha U N Das R, Soundalgekar V M. Effects on mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction[J]. Forschung im Ingenieurwesen, 1994, 60(2): 284-309. doi: 10.1007/BF02601318
    [4] Muthucumaraswamy R. Effects of a chemical reaction on a moving isothermal vertical surface with suction[J]. Acta Mechanica, 2002, 155(1/2): 65-72. doi: 10.1007/BF01170840
    [5] Muthucumaraswamy R, Meenakshisundaram S. Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature[J]. Theoretical Applied Mechanics, 2006, 33(3): 245-257. doi: 10.2298/TAM0603245M
    [6] Raptis A, Massalas A, Tzivanidis G. Hydromagnetic free convection flow through a porous medium between two parallel plates[J]. Physics Letter A, 1982, 90(6): 288-289. doi: 10.1016/0375-9601(82)90118-9
    [7] Gribben R J. The magnetohydrodynamic boundary layer in the presence of a pressure gradient[J]. Proceeding of the Royal Society of London, 1965, 287(1408): 123-141. doi: 10.1098/rspa.1965.0172
    [8] Helmy K A. MHD unsteady free convection flow past a vertical porous plate[J]. ZAMM, 1998, 78(4): 255-270. doi: 10.1002/(SICI)1521-4001(199804)78:4<255::AID-ZAMM255>3.0.CO;2-V
    [9] Gregantopoulos G A, Koullias J, Goudas C L, Courogenis C. Free convection and mass transfer effects on the hydromagnetic oscillatory flow past an infinite vertical porous plate[J]. Astrophysics and Space Science, 1981, 74(2): 357-389. doi: 10.1007/BF00656444
    [10] Hossain M A, Takhar H S. Radiation effect on mixed convection along a vertical plate with uniform surface temperature[J]. Heat Mass Transfer, 1996, 31(4): 243-248. doi: 10.1007/BF02328616
    [11] Kim Y J, Fedorov A G. Transient mixed radiative convection flow of a micro polar fluid past a moving semi-infinite vertical porous plate[J]. International Journal Heat Mass Transfer, 2003, 46(10): 1751-1758. doi: 10.1016/S0017-9310(02)00481-7
    [12] Muthuraj R, Srinivas S. Fully developed MHD flow of a micropolar and viscous fluid in a vertical porous space using HAM[J]. International Journal Applied Mathematics and Mechanics, 2010, 6(11): 79-97.
    [13] Seddek M A. Finite-element method for the effects of chemical reaction, variable viscosity, thermophoresis and heat generation/absorption on a boundary-layer hydro magnetic flow with heat and mass transfer over a heat surface[J]. Acta Mechanica, 2005, 177(14): 1-18. doi: 10.1007/s00707-005-0249-8
    [14] Patil P M, Kulkarni P S. Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation[J]. International Journal Thermal Science, 2008, 48(4): 1043-1054.
    [15] Mohamad R A. Double diffusive convection-radiation interaction on unsteady MHD flow over a vertical moving porous plate with heat generation and Soret effects[J]. Applied Mathematical Sciences, 2009, 13(13): 629-651.
    [16] Prasad V R, Reddy N B. Radiation effects on an unsteady MHD convective heat and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in a porous medium[J]. Journals of Energy Heat and Mass Transfer, 2008, 30: 57-68.
    [17] Satya Narayana P V, Venkataramana S. Hall current effect on magnetohydro dynamics free-convection flow past a semi-infinite vertical porous plate with mass transfer[D]. PhD Thesis. SV University, 2007.
    [18] Sudheer Babu M, Satya Narayana P V. Effects of the chemical reaction and radiation absorption on free convection flow through porous medium with variable suction in the presence of uniform magnetic field[J]. JP Journal of Heat and Mass Transfer, 2009, 3: 219-234.
    [19] Pal D, Talukdar B. Perturbation analysis of unsteady magneto hydro dynamic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(7): 1813-1830. doi: 10.1016/j.cnsns.2009.07.011
    [20] Kim Y J. Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction[J]. International Journal of Engineering Science, 2000, 38(8): 833-845. doi: 10.1016/S0020-7225(99)00063-4
    [21] Kesavaiah D Ch, Satyanarayana P V, Venkataramana S. Effects of the chemical reaction and radiation absorption on an unsteady MHD convective heat and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in a porous medium with heat source and suction[J]. International Journal of Applied Mathematics and Mechanics, 2011, 7(1): 52-69.
    [22] Reddy J N. An Introduction to the Finite Element Method[M]. New York: McGraw-Hill, 1985.
    [23] Bathe K J. Finite Element Procedures[M]. New Jersey: Prentice-Hall, 1996.
  • 加载中
计量
  • 文章访问数:  1722
  • HTML全文浏览量:  164
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-11
  • 修回日期:  2011-04-19
  • 刊出日期:  2011-08-15

目录

    /

    返回文章
    返回