留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶Duffing混沌系统的动力性态及其由单一主动控制的混沌同步

何桂添 罗懋康

何桂添, 罗懋康. 分数阶Duffing混沌系统的动力性态及其由单一主动控制的混沌同步[J]. 应用数学和力学, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003
引用本文: 何桂添, 罗懋康. 分数阶Duffing混沌系统的动力性态及其由单一主动控制的混沌同步[J]. 应用数学和力学, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003
HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control[J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003
Citation: HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control[J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003

分数阶Duffing混沌系统的动力性态及其由单一主动控制的混沌同步

doi: 10.3879/j.issn.1000-0887.2012.05.003
基金项目: 国家自然科学基金资助项目(11171238);教育部长江学者和创新团队发展计划基金资助项目(IRTO0742)
详细信息
    通讯作者:

    何桂添(1983—),男,江西赣州人,博士生(E-mail:heguitian100@163.com);罗懋康(1956—),男,重庆人,教授(联系人.E-mail: makaluo@scu.edu.cn).

  • 中图分类号: O415.5;O151;O369;O193

Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control

  • 摘要: 随着物理与技术的深入研究,分数阶非线性系统的动力性态及其分数阶混沌系统的同步成为研究的焦点.研究了分数阶Duffing系统的动力性态包括混沌性质,并且由分数阶非线性稳定性准则得到了分数阶非自治系统的混沌同步.特别地,研究了由单一主动控制的分数阶Duffing系统的同步.相应的数值结果演示了方法的有效性.
  • [1] Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1999.
    [2] Kilbas A A,Sarivastava H M,Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. New York: Elsevier, 2006.
    [3] Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity[M]. London: Imperial College Press, 2010.
    [4] Sheu L J, Chen H K, Chen J H, Tam L M. Chaotic dynamics of the fractionally damped Duffing equation[J]. Chaos Solitons Fractals, 2007,32(4): 1459-1468.
    [5] Wang Z H, Hu H Y. Stability of a linear oscillator with damping force of the fractional-order derivative[J]. Science China, 2010,53(2): 345-352.
    [6] Ge Z M, Ou C Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal[J]. Chaos,Solitons Fractals, 2008, 35(2): 705-717.
    [7] Xin G, Yu J B. Chaos in the fractional order periodically forced complex Duffing’s oscillators[J]. Chaos Solitons Fractals, 2005, 24(4): 1097-1104.
    [8] Chen J H, Chen W C. Chaotic dynamics of the fractionally damped van der Pol equation[J]. Chaos Solitons Fractals, 2008, 35(1): 188-198.
    [9] Yu Y G, Li H X, Wang S, Yu J Z. Dyanmic analysis of a fractional-order Lorenz chaotic system[J]. Chaos Solitons Fractals, 2009,42(2): 1181-1189.
    [10] C·K·阿衡. 基于混沌同步化的广义无源性[J]. 应用数学和力学,2010,31(8):961-970.(Choon Ki Ahn. Generalized passivity-based chaos synchronization[J].Applied Mathematics and Mechanics(English Edition), 2010,31(8): 1009-1018.)
    [11] 柴元, 吕翎, 赵鸿雁. 异结构离散型混沌系统的延迟同步[J]. 应用数学和力学, 2010, 31(6): 703-709.(CHAI Yuan, L Ling, ZHAO Hong-yan. Lag synchronization between discrete chaotic systems with diverse structure[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 733-738.)
    [12] 刘艳, 吕翎. N个异结构混沌系统的环链耦合同步[J]. 应用数学和力学,2008,29(10):1181-1190.(LIU Yan, L Ling. Synchronization of N different coupled chaotic systems with ring and chain connections[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(10): 1299-1308.)
    [13] Albert C J L, Fuhong M. Synchronization dynamics of two different dynamical systems[J]. Chaos Solitons Fractals, 2011,44(6): 362-380.
    [14] Albert C J L. A theory for synchronization of dynamical systems[J]. Commun Nonlinear Sci Numer Simulat, 2009,14(5): 1901-1951.
    [15] Habib D, Antonio L. Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication[J]. IEEE Trans Circuits Sys I Reg Papers, 2011, 58(4): 800-812.
    [16] Olga I M, Alexey A K, Alexander E H. Generalized synchronization of chaos for secure communication: Remarkable stability to noise[J]. Phys Lett A, 2010, 374(29): 2925-2931.
    [17] Wang X Y, He Y J, Wang M J. Chaos control of a fractional order modified coupled dynamos system[J]. Nonlinear Anal, 2009, 71(12): 6126-6134.
    [18] Sachin B, Varsha D G. Synchronization of different fractional order chaotic systems using actice control[J]. Commun Nolinear Sci Numer Simulat, 2010,15(11): 3536-3546.
    [19] Wu X J, Lu Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system[J]. Nonlinear Dyn, 2009,57(1/2): 25-35.
    [20] Matouk A E. Chaos, feedback control and synchronization of a fractional-order modified Autonomous van der Pol-Duffing circuit[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(2): 975-986.
    [21] Abel A, Schwarz W. Chaos communications-principles, schemes, and system analysis[J]. P IEEE, 2002, 90(5): 691-710.
    [22] Hu N Q, Wen X S. The application of duffing oscillator in characteristic signal detection of early fault[J]. J Sound Vib, 2003, 268(5): 917-931.
    [23] Nadakuditi R R, Silverstein J W. Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples[J]. IEEE Trans Ind Electron, 2010, 4(3): 468-480.
    [24] Zhao Z, Wang F L, Jia M X, Wang S. Intermittent-chaos-and-cepstrum-analysis-based early fault detection on shuttle valve of hydraulic tube tester[J]. IEEE Trans Ind Electron, 2009, 56(7): 2764-2770.
    [25] Diethelm K, Ford N J. Analysis of fractional differential equations[J]. J Math Anal Appl, 2002, 265(2): 229-248.
    [26] Li C P, Zhang F R. A survey on the stability of fractional differential equations[J]. Eur Phys J Special Topics, 2011, 193(1): 27-47.
    [27] Sabattier J, Moze M, Farges C. LMI stability conditions for fractional order system[J]. Comput Math Appl, 2010, 59(5): 1594-1609.
    [28] Thavazoei M S, Haeri M. A note on the stability of fractional order system[J]. Math Comput Simul, 2009, 79(5): 1566-1576.
    [29] Diethelm K, Ford N J. Multi-order fractional differential equations and their numerical solution[J]. Appl Math Comput, 2004, 154(3): 621-640.
    [30] Diethelm K, Ford N J, Freed A D, Luchko Y. Algorithms for the fractional calculus:a selection of numerical method[J]. Comput Methods Appl Mech Engrg, 2005, 194(6/8): 743-773.
  • 加载中
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  51
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-30
  • 修回日期:  2012-02-05
  • 刊出日期:  2012-05-15

目录

    /

    返回文章
    返回