留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体流经热分层线性多孔伸展平面时的MHD自然对流及其Lie对称群变换

A·K·罗斯米拉 R·坎达沙密 I·姆哈敏

A·K·罗斯米拉, R·坎达沙密, I·姆哈敏. 纳米流体流经热分层线性多孔伸展平面时的MHD自然对流及其Lie对称群变换[J]. 应用数学和力学, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005
引用本文: A·K·罗斯米拉, R·坎达沙密, I·姆哈敏. 纳米流体流经热分层线性多孔伸展平面时的MHD自然对流及其Lie对称群变换[J]. 应用数学和力学, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005
Abdul-Kahar Rosmila, Ramasamy Kandasamy, Ismoen Muhaimin. Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification[J]. Applied Mathematics and Mechanics, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005
Citation: Abdul-Kahar Rosmila, Ramasamy Kandasamy, Ismoen Muhaimin. Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification[J]. Applied Mathematics and Mechanics, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005

纳米流体流经热分层线性多孔伸展平面时的MHD自然对流及其Lie对称群变换

doi: 10.3879/j.issn.1000-0887.2012.05.005
详细信息
  • 中图分类号: O361.3; O357.3; O357.4

Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification

  • 摘要: 就不可压缩粘性纳米流体,流经半无限垂直伸展平面并计及热分层时,研究该流体的MHD自然对流和热交换.通过特定形式的Lie对称群变换,即单参数群变换,将所考虑问题的偏微分控制方程变换为常微分方程组.然后,使用基于打靶法的Runge Kutta Gill法进行数值求解.最后得到结论:流场、温度和纳米颗粒体积率受热分层和磁场的影响很显著.
  • [1] Choi S. Enhancing thermal conductivity of fluids with nanoparticle[C]Siginer D A, Wang H P. Developments and Applications of Non-Newtonian Flows. ASME MD Vol 231,New York and FED, 1995, 66(1): 99-105.
    [2] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles[J]. Netsu Bussei, 1993, 7(2): 227-233.
    [3] Buongiorno J, Hu W. Nanofluid coolants for advanced nuclear power plants[C]Proceedings of ICAPP’05, Paper no 5705. Seoul: Curran Associctes, May, 2005: 15-19.
    [4] Buongiorno J. Convective transport in nanofluids[J]. ASME Journal of Heat Transfer, 2006, 128(2): 240-250.
    [5] Kuznetsov A V, Nield D A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243-247.
    [6] Nield D A, Kuznetsov A V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009, 52(9): 5792-5795.
    [7] Cheng P, Minkowycz W J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike[J]. Journal of Geophysics Research, 1977, 82(6): 2040-2044.
    [8] Birkoff G. Mathematics for engineers[J]. Electrical Engineering, 1948, 67(5): 1185-1188.
    [9] Birkoff G. Hydrodynamics[M]. New Jersey: Princeton University Press, 1960.
    [10] Moran M J, Gaggioli R A. Similarity analysis via group theory[J]. AIAA Journal, 1968, 6(8): 2014-2016.
    [11] Moran M J, Gaggioli R A. Reduction of the number of variables in systems of partial differential equations with auxiliary conditions[J]. SIAM Journal of Applied Mathematics, 1968, 16(2): 202-215.
    [12] Ibrahim F S, Hamad M A A. Group method analysis of mixed convection boundary layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder[J]. Acta Mechanica, 2006, 181(1): 65-81.
    [13] Yurusoy M, Pakdemirli M. Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian fluids[J]. International Journal of Engineering Sciences, 1997, 35(2): 731-740.
    [14] Yurusoy M, Pakdemirli M. Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet[J]. Mechanics Research Communications, 1999, 26 (1):171-175.
    [15] Yurusoy M, Pakdemirli M, Noyan O F. Lie group analysis of creeping flow of a second grade fluid[J]. International Journal of Non-Linear Mechanics, 2001, 36(8): 955-960.
    [16] Makinde O D, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition[J]. International Journal of Thermal Science, 2011, 50(5): 1326-1332.
    [17] Hassanien I A, Hamad M A A. Group theoretic method for unsteady free convection flow of a micropolar fluid along a vertical plate in a thermally stratified medium[J]. Applied Mathematical Modeling, 2008, 32(6): 1099-1114.
    [18] Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1326-1336.
    [19] Nakayama A, Koyama H.Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium[J]. Applied Scientific Research, 1989, 46(2): 309-314.
    [20] Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(4): 630-640.
    [21] Crane L J. Flow past a stretching plate[J]. Z Angew Mathematik und Physik (ZAMP), 1970, 21(4): 645-647.
    [22] Vajravelu K. Flow and heat transfer in a porous medium over a stretching surface[J]. Z Angew Mathematik und Mechanik (ZAMM), 1994, 74(12): 605-614.
    [23] Abel M S, Veena P H. Visco-elastic fluid flow and heat transfer in a porous media over a stretching sheet[J]. International Journal of Non-Linear Mechanics, 1998, 33(3): 531-540.
    [24] Abel M S, Khan S K, Prasad K V. Momentum and heat transfer in visco-elastic fluid in a porous medium over a non-isothermal stretching sheet[J]. International Journal of Numerical Methods and Heat Fluid Flow, 2000, 10(3): 786-801.
    [25] Gill S. A process for the step-by-step integration of differential equations in an automatic digital computing machine[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47(1): 96-108.
    [26] Grubka L G, Bobba K M. Heat transfer characteristics of a continuous stretching surface with variable temperature[J]. ASME J Heat Transfer, 1985, 107(2): 248-250.
    [27] Ali M E. Heat transfer characteristics of a continuous stretching surface[J]. Heat and Mass Transfer, 1994, 29(4): 227-234.
    [28] Ishak A, Nazar R, Pop I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface[J]. Meccanica, 2009, 44(2): 369-375.
    [29] Vajravelu K, Prasad K V, Lee J, Lee C, Pop I, Van Gorder R A. Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface[J]. International Journal of Thermal Sciences, 2011, 50(5): 843-851.
    [30] Hamad M A A, Pop I, Ismail Md A I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate[J]. Nonlinear Analysis: Real World Applications, 2011, 12(3): 1338-1346.
  • 加载中
计量
  • 文章访问数:  1625
  • HTML全文浏览量:  124
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-23
  • 修回日期:  2011-12-21
  • 刊出日期:  2012-05-15

目录

    /

    返回文章
    返回