留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微极流体薄膜层通过以滑移速度移动的可渗透无限平板时流体特性变化和热辐射对流动和热传导的影响

M·A·A·哈玛麦德 S·E·瓦希德

M·A·A·哈玛麦德, S·E·瓦希德. 微极流体薄膜层通过以滑移速度移动的可渗透无限平板时流体特性变化和热辐射对流动和热传导的影响[J]. 应用数学和力学, 2012, 33(5): 628-642. doi: 10.3879/j.issn.1000-0887.2012.05.010
引用本文: M·A·A·哈玛麦德, S·E·瓦希德. 微极流体薄膜层通过以滑移速度移动的可渗透无限平板时流体特性变化和热辐射对流动和热传导的影响[J]. 应用数学和力学, 2012, 33(5): 628-642. doi: 10.3879/j.issn.1000-0887.2012.05.010
Mostafa A.A.Mahmoud, Shimaa E.Waheed. Variable Fluid Properties and Thermal Radiation Effects on the Flow and Heat Transfer in a Micropolar Fluid Film Past a Moving Permeable Infinite Flat Plate With Slip Velocity[J]. Applied Mathematics and Mechanics, 2012, 33(5): 628-642. doi: 10.3879/j.issn.1000-0887.2012.05.010
Citation: Mostafa A.A.Mahmoud, Shimaa E.Waheed. Variable Fluid Properties and Thermal Radiation Effects on the Flow and Heat Transfer in a Micropolar Fluid Film Past a Moving Permeable Infinite Flat Plate With Slip Velocity[J]. Applied Mathematics and Mechanics, 2012, 33(5): 628-642. doi: 10.3879/j.issn.1000-0887.2012.05.010

微极流体薄膜层通过以滑移速度移动的可渗透无限平板时流体特性变化和热辐射对流动和热传导的影响

doi: 10.3879/j.issn.1000-0887.2012.05.010
详细信息
  • 中图分类号: O357

Variable Fluid Properties and Thermal Radiation Effects on the Flow and Heat Transfer in a Micropolar Fluid Film Past a Moving Permeable Infinite Flat Plate With Slip Velocity

  • 摘要: 微极流体薄膜层通过按滑移速度移动的可渗透无限竖直平板时,研究热辐射对混合对流薄膜层流动和热传导的影响.假定流体粘度和热传导率变化是温度的一个函数.对一些典型的可变参数值,应用Chebyshev谱方法,数值求解流动的控制方程.将所得结果与已发表文献的结果进行比较,结果是一致的.绘出并讨论了可变参数对速度、微旋转速度、温度分布曲线、表面摩擦因数和Nusselt数的影响.
  • [1] Sakiadis B C. Boundary layer behavior on continuous solid surface—Ⅱ: the boundary layer on a continuous flat surface[J]. AIChE J, 1961, 7(2): 221-225.
    [2] Tsou F K, Sparrow E M, Goldstein K J. Flow and heat transfer in the boundary layer on a continuous moving surface[J]. Int J Heat Mass Transfer, 1967, 10(2): 219-235.
    [3] Erickson L E, Fan L T, Fox V G. Heat and mass transfer on a moving continuous flat plate with suction or blowing[J]. Ind Engng Chem Fund, 1966, 5: 19-25.
    [4] Griffin J F, Thorne J L. On the thermal boundary layer growth on continuous moving belts[J]. AIChE J, 1967, 13(6): 1210-1211.
    [5] Moutsoglou A, Chen T S. Buoyancy effects in boundary layers on inclined continuous moving sheets[J]. J Heat Transfer, 1980, 102(2):171-173.
    [6] Jeng D R, Chang T C A, DeWitt K J. Momentum and heat transfer on a continuous moving surface[J]. J Heat Transfer, 1986,108(3): 532-537.
    [7] Takhar H S, Chamkha A J, Nath G. Effect of buoyancy forces on the flow and heat transfer over a continuous moving vertical or inclined surface[J]. Int J Thermal Sci, 2001, 40(9): 825-833.
    [8] Mahmoud M A A. Variable viscosity effects on hydromagnetic boundary layer flow along a continuously moving vertical plate in the presence of radiation[J]. Appl Math Sci, 2007, 1(17): 799-814.
    [9] Mahmoud M A A, Megahed A M. On steady hydromagnetic boundary-layer flow of a non-Newtonian power-law fluid over a continuously moving surface with suction[J]. Chem Eng Comm, 2007, 194(11): 1457-1469.
    [10] Mahmoud M A A, Megahed A M. Effects of viscous dissipation and heat generation (absorption) in a thermal boundary layer of a non-Newtonian fluid over a continuously moving permeable flat plate[J]. J Applied Mechanics and Technical Physics, 2009, 50(5): 819-825.
    [11] Bar-Cohen A, Sherwood G, Hodes M, Solbreken G L. Gas-assisted evaporative cooling of high density electronic modules[J]. IEEE Trans CPMT, Part A, 1995, 18(3): 502-509.
    [12] Chun K R, Seban R A. Heat transfer to evaporating liquid films[J]. ASME J Heat Transfer, 1971, 93: 391-396.
    [13] Killion J D, Garimella S. Simulation of pendant droplets and falling films in horizontal tube absorbers[J]. ASME J Heat Transfer, 2004, 126(6): 1003-1013.
    [14] Rabani E, Rechman D R, Gelssler P L, Brus L E. Drying mediated self assembly of nano-particles[J]. Nature, 2003, 426: 271-274.
    [15] Calvert P, Ink-jet printing for materials and devices[J]. Chem Mater, 2001, 13(10): 3299-3305.
    [16] Wang C. Liquid film on an unsteady stretching surface[J]. Quarterly of Applied Mathematics, 1990, 48: 601-610.
    [17] Andersson H I, Aarseth J B, Dandapat B S. Heat transfer in a liquid film on an unsteady stretching surface[J]. Int J Heat and Mass Transfer, 2000, 43(1): 69-74.
    [18] Dandapat B S, Santra B, Andersson H I. Thermocapillarity in a liquid film on an unsteady stretching surface[J]. Int J Heat Mass Transfer, 2003, 46(16): 3009-3015.
    [19] Chen C H. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet[J]. J Non-Newtonian Fluid Mech, 2006, 135(2/3): 128-135.
    [20] Wang C, Pop I. Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method[J]. J Non-Newtonian Fluid Mech, 2006, 138(2/3): 161-172.
    [21] Abbas Z, Hayat T, Sajid M, Asghar S. Unsteady flow of a second grade fluid film over an unsteady stretching sheet[J]. Mathematical and Computer Modelling, 2008, 48: 518-526.
    [22] Abel M S, Mahesha N, Tawade J. Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field[J]. Applied Mathematical Modelling, 2009, 33(8): 3430-3441.
    [23] Santra B, Dandapat B S. Unsteady thin-film flow over a heated stretching sheet[J]. Int J Heat Mass Transfer, 2009, 52(7/8): 1965-1970.
    [24] Noor N F M, Abdulaziz O, Hashim I. MHD flow and heat transfer in a thin liquid film on an unsteady stretching sheet by the homotopy analysis method[J]. Int J Numer Meth Fluids, 2010, 63: 357-373.
    [25] Siddiqui A M, Mahmood R, Ghori Q K. Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane[J]. Chaos, Solitons and Fractals, 2008, 35(1): 140-147.
    [26] Eringen A C. Theory of micropolar fluids[J]. J Math Mech, 1966, 16: 1-18.
    [27] Eringen A C. Theory of thermomicropolar fluids[J]. J Math Appl, 1972, 38: 480-495.
    [28] Armin T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics a review[J]. Int J Engng Sci, 1973, 11(8): 905-915.
    [29] Armin T, Turk M A, Sylvester N D. Application of microcontinuum fluid mechanics[J]. Int J Engng Sci, 1974, 12(4): 273-279.
    [30] Lukaszewicz G. Micropolar Fluids: Theory and Application[M]. Basel: Birkhuser, 1999.
    [31] Eringen A C. Microcontinuum Field Theories—Ⅱ: Fluent Media[M]. New York: Springer, 2001.
    [32] 乔德哈瑞 R C, 吉哈 A K.化学反应对竖直平板边界磁流体动力学微极流体滑流的影响[J]. 应用数学和力学,2008, 29(9): 1069-1082.(Chaudhary R C, Jha A K. Effects of chemical reactions on MHD micropolar fluid past a vertical plate in slip-flow regime[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(9): 1179-1194.)
    [33] Hayat T, Sajid M, Ali N. On exact solutions for thin film flows of a micropolar fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2): 451-461.
    [34] Dandapat B S, Santra B, Vajravelu K. The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet[J]. Int J Heat Mass Transfer, 2007, 50(5/6): 991-996.
    [35] Nadeem S, Faraz N. Thin film flow of a second grade fluid over a stretching/shrinking sheet with variable temperature-dependent viscosity[J]. Chinese Phys Lett, 2010, 27(3): 034704.
    [36] Makinde O D. Laminar falling liquid film with variable viscosity along an inclined heated plate[J]. Applied Mathematics and Computation, 2006, 175(1): 80-88.
    [37] Mahmoud M A A, Megahed A M. MHD flow and heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet with variable fluid properties[J]. Can J Phy, 2009, 87(10): 1065-1071.
    [38] Hayat T, Javed T, Abbas Z. Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space[J]. Int J Heat Mass Transfer, 2008, 51(17/18): 4528-4534.
    [39] Asghar S, Gulzar M M, Ayub M. Effects of partial slip on flow of a third grade fluid[J]. Acta Mech Sin, 2006, 22(5): 393-396.
    [40] Mahmoud M A A. Slip effects on flow and heat transfer of a non-Newtonian fluid on a stretching surface with thermal radiation[J]. Int J Chem React Engng, 2008, 6(1): A92.
    [41] Sajid M, Awais M, Nadeem S, Hayat T. The influence of slip condition on thin film flow of a fourth grade fluid by the homotopy analysis method[J]. Computers and Mathematics With Applications, 2008, 56(8): 2019-2026.
    [42] 祖额科 J, 阿么德 S. 流经有热源多孔平板并伴有化学反应的传热传质混合对流MHD流动[J]. 应用数学和力学,2010, 31(10): 1160-1171.(Zueco J, Ahmed S. Combined heat and mass transfer by mixed convection MHD flow along a porous plate with chemical reaction in presence of heat source[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(10): 1217-1230.)
    [43] Chandrakala P. Radiation effects on flow past an impulsively started vertical oscillating plate with uniform heat flux[J]. Int J Dynamics of Fluids, 2011, 7(1): 1-8.
    [44] Jena S K, Mathur M N. Similarity solution for laminar free convection flow of thermo-micropolar fluid past a non-isothermal vertical flat plate[J]. Int J Engng Sci, 1981, 19(11): 1431-1439.
    [45] Peddieson J, M
  • 加载中
计量
  • 文章访问数:  1317
  • HTML全文浏览量:  74
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-04
  • 修回日期:  2011-12-27
  • 刊出日期:  2012-05-15

目录

    /

    返回文章
    返回