留言板

Maxwell流体在震荡的矩形输送管道中的流动

M·娜扎, F·沙希德, M·S·阿克拉姆, Q·苏丹. Maxwell流体在震荡的矩形输送管道中的流动[J]. 应用数学和力学, 2012, 33(6): 678-691. doi: 10.3879/j.issn.1000-0887.2012.06.004
 引用本文: M·娜扎, F·沙希德, M·S·阿克拉姆, Q·苏丹. Maxwell流体在震荡的矩形输送管道中的流动[J]. 应用数学和力学, 2012, 33(6): 678-691.
M.Nazar, Fatima Shahid, M.Saeed Akram, Q.Sultan. Flow on Oscillating Rectangular Duct for Maxwell Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(6): 678-691. doi: 10.3879/j.issn.1000-0887.2012.06.004
 Citation: M.Nazar, Fatima Shahid, M.Saeed Akram, Q.Sultan. Flow on Oscillating Rectangular Duct for Maxwell Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(6): 678-691.

• 中图分类号: O357

Flow on Oscillating Rectangular Duct for Maxwell Fluid

• 摘要: 分析了不可压缩Maxwell流体在震荡矩形截面管道中的非稳定流动问题．利用Fourier变换和Laplace变换作为数学工具，提出了问题的解，该解可以看成稳态解和暂态解之和．大倍数时，暂态消失，解可以表示为稳态解．在极限情况的案例中给出了Newton流体的解．当震荡频率不存在时，得到了Maxwell流体在震荡矩形截面管道中流动问题的解．最后，以图形形式给出不同参数时，矩形管道正弦震荡达到稳态所需要的时间．同时，分别描绘了x和y变化时的速度曲线．
•  [1] Vieru D, Nazar M, Fetecau Corina, Fetecau C. New exact solutions corresponding to the first problem of Stokes for Oldroyd-B fluids[J]. Int J Computers and Mathematics With Appl, 2008, 55(8): 1644-1652. [2] Fetecau C, Fetecau Corina. Decay of a potential vortex in a Maxwell fluid[J]. Int J Non-Linear Mech, 2003, 38(7): 985-990. [3] Fetecau C, Fetecau Corina. A new exact solution for the flow of a Maxwell fluid past an infinite plate[J]. Int J Non-Linear Mech, 2003, 38(3): 423-427. [4] Fetecau C, Fetecau Corina. The Rayleigh-Stokes-Problem for a fluid of Maxwellian type[J]. Int J Non-Linear Mech, 2003, 38(4): 603-607. [5] Nadeem S, Asghar S, Hayat T, Hussain Mazhar. The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid[J]. Meccanica, 2008, 43(5): 495-504. [6] Chen C K, Chen C I, Yang Y T. Unsteady unidirectional flow of a Maxwell fluid in a circular duct with different given volume flow rate conditions[J]. J Mechanical Engineering Science, 2002, 216(5): 583-590. [7] Broer L J F. On the hydrodynamics of viscoelastic fluids[J]. Appl Sci Res A, 1956, 6(2/3): 226-236. [8] Thurston G R. Theory of oscillation of a viscoelastic medium between parallel planes[J]. J Appl Phys, 1959, 30(12): 1855-1860. [9] Thurston G R. Theory of oscillation of a viscoelastic fluid in a circular tube[J]. JASA, 1960, 32(2): 210-213. [10] Jones J R, Walters T S. Flow of elastico-viscous liquids in channels under the influence of a periodic pressure gradient—part Ⅰ[J]. Rheol Acta , 1967, 6(3): 240-245. [11] Jones J R, Walters T S. Flow of elastico-viscous liquids in channels under the influence of a periodic pressure gradient—part Ⅱ[J]. Rheol Acta, 1967, 6(4): 330-338. [12] Peev G, Elenkov D, Kunev I. On the problem of oscillatory laminar flow of elastico-viscous liquids in channels[J]. Rheol Acta, 1970, 9(4): 506-508. [13] Bhatnagar R K. Flow of an Oldroyd fluid in a circular pipe with time dependent pressure gradient[J]. Appl Sci Res, 1975, 30(4): 241-267. [14] Ramkissoon H, Eswaran C V, Majumdar S R. Unsteady flow of an elastico-viscous fluid in tubes of uniform cross-section[J]. Int J Non-Linear Mech, 1989, 24(6): 585-597. [15] Rahaman K D, Ramkissoon H. Unsteady axial viscoelastic pipe flows[J]. J Non-Newtonian Fluid Mech, 1995, 57(1): 27-38. [16] Walitza E, Maisch E, Chmiel H, Andrade I. Experimental and numerical analysis of oscillatory tube flow of viscoelastic fluids represented at the example of human blood[J]. Rheol Acta, 1979, 18(1): 116-121. [17] Bohme G. Stromungsmechanik Nicht-Newtonscher Fluid[M]. Stuttgart: B G Teubner, 1981. [18] Wood W P. Transient viscoelastic helical flows in pipes of circular and annular cross-section[J]. J Non-Newtonian Fluid Mech, 2001, 100(1/3): 115-126. [19] Nazar M, Zulqarnain M, Saeed Akram M, Asif M. Flow through an oscillating rectangular duct for generalized Maxwell fluid with fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(8): 3219-3234.
计量
• 文章访问数:  1361
• HTML全文浏览量:  132
• PDF下载量:  1086
• 被引次数: 0
出版历程
• 收稿日期:  2011-04-13
• 修回日期:  2012-02-11
• 刊出日期:  2012-06-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈