留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向运动三参数黏弹性梁弱受迫振动的渐近分析

王波

王波. 轴向运动三参数黏弹性梁弱受迫振动的渐近分析[J]. 应用数学和力学, 2012, 33(6): 771-780. doi: 10.3879/j.issn.1000-0887.2012.06.010
引用本文: 王波. 轴向运动三参数黏弹性梁弱受迫振动的渐近分析[J]. 应用数学和力学, 2012, 33(6): 771-780. doi: 10.3879/j.issn.1000-0887.2012.06.010
WANG Bo. Asymptotic Analysis on Weakly Forced Vibration of an Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model[J]. Applied Mathematics and Mechanics, 2012, 33(6): 771-780. doi: 10.3879/j.issn.1000-0887.2012.06.010
Citation: WANG Bo. Asymptotic Analysis on Weakly Forced Vibration of an Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model[J]. Applied Mathematics and Mechanics, 2012, 33(6): 771-780. doi: 10.3879/j.issn.1000-0887.2012.06.010

轴向运动三参数黏弹性梁弱受迫振动的渐近分析

doi: 10.3879/j.issn.1000-0887.2012.06.010
基金项目: 国家自然科学基金资助项目(10972143);上海高校青年教师培养资助计划(YYY11040);上海市教育委员会重点学科建设资助项目(J51501)
详细信息
    通讯作者:

    王波(1982—),男,辽宁盘锦人,讲师,博士(Tel: +86-21-60873024; E-mail: b.wang@live.com).

  • 中图分类号: O326

Asymptotic Analysis on Weakly Forced Vibration of an Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model

  • 摘要: 研究了轴向运动三参数黏弹性梁的弱受迫振动.建立了轴向运动三参数黏弹性梁受迫振动的控制方程.使用多尺度法渐近分析了运动梁的稳态响应,导出了解稳定性边界方程、稳态振幅的表达式以及稳态响应非零解的存在条件.依据Routh-Hurwitz定律决定了非线性稳态响应非零解的稳定性.
  • [1] Chen L Q. Nonlinear vibrations of axially moving beams[C]Evans T. Nonlinear Dynamics. INTECH, Croatia, 2010: 145-172.
    [2] Pasin F. Ueber die stabilitt der beigeschwingungen von in laengsrichtung periodisch hin und herbewegten stben[J]. Ingenieur-Archiv, 1972, 41(6):387-393.
    [3] z H R, Pakdemirli M, zkaya E. Transition behavior from string to beam for an axially accelerating material[J]. Journal of Sound and Vibration, 1998, 215(3): 571-576.
    [4] z H R. On the vibrations of an axially traveling beam on fixed supports with variable velocity[J]. Journal of Sound and Vibration, 2001, 239(3): 556-564.
    [5] Suweken G, van Horssen W T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity—part Ⅱ: the beam like case[J]. Journal of Sound and Vibration, 2003, 267(5/6): 1007-1027.
    [6] Pakdemirli M, z H R. Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations[J]. Journal of Sound and Vibration, 2008, 311(3/5): 1052-1074.
    [7] Chen L Q, Yang X D, Cheng C J. Dynamic stability of an axially accelerating viscoelastic beam[J]. Eur J Mech A/Solid, 2004, 23(4): 659-666.
    [8] Chen L Q, Yang X D. Stability in parametric resonances of an axially moving viscoelastic beam with time-dependent velocity[J]. Journal of Sound and Vibration, 2005, 284(3/5): 879-891.
    [9] Yang X D, Chen L Q. Stability in parametric resonance of axially accelerating beams constituted by Boltzmann’s superposition principle[J]. Journal of Sound and Vibration, 2006, 289(1/2): 54-65.
    [10] Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J]. Eur J Mech A/Solid, 2006, 25(6): 996-1008.
    [11] Maccari A. The asymptotic perturbation method for nonlinear continuous systems[J]. Nonlinear Dynamics, 1999, 19(1): 1-18.
    [12] Boertjens G J, van Horssen W T. On interactions of oscillation modes for a weakly non-linear undamped elastic beam with an external force[J]. Journal of Sound and Vibration, 2000, 235(2): 201-217.
    [13] Chen L Q, Lim C W, Hu Q Q, Ding H. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary[J]. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1414-1422.
    [14] Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models[J]. Int J Solids Struct, 2005, 42(1): 37-50.
    [15] Yang T Z, Fang B, Chen Y, Zhen Y X. Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(2): 230-238.
    [16] Ding H, Chen L Q. Nonlinear models for transverse forced vibration of axially moving viscoelastic beams[J]. Shock and Vibration, 2011, 18(1/2): 281-287.
    [17] Chen L Q, Ding H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams[J]. ASME Journal of Vibration and Acoustics, 2010, 132(1): 011009.
    [18] Mockensturm E M, Guo J. Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings[J]. ASME J Appl Mech, 2005, 72(3): 374-380.
    [19] Chen L Q, Yang X D. Bifurcation and chaos of an axially accelerating viscoelastic beam[J]. Chaos, Solitons and Fractals, 2005, 23(1): 249-258.
    [20] Hou Z, Zu J W. Non-linear free oscillations of moving viscoelastic belts[J]. Mech Mach Theory, 2002, 37(9): 925-940.
    [21] Fung R F, Huang J S, Chen Y C, Yao C M. Nonlinear dynamic analysis of the viscoelastic string with a harmonically varying transport speed[J]. Comput Struct, 1998, 66(6): 777-784.
    [22] Ha J L, Chang J R, Fung R F. Nonlinear dynamic behavior of a moving viscoelastic string undergoing three-dimensional vibration[J]. Chaos, Solitons & Fractals, 2007, 33(4): 1117-1134.
    [23] Chen L Q, Chen H. Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model[J]. J Eng Math, 2010, 67(3): 205-218.
    [24] Chen L Q, Ding H. Steady-state responses of axially accelerating viscoelastic beams: approximate analysis and numerical confirmation[J]. Sci China Ser G-Phys Mech Astron, 2008, 51(11): 1701-1721.
    [25] Ding H, Chen L Q. On two transverse nonlinear models of axially moving beams[J]. Sci China Ser E-Tech Sci, 2009, 52(3): 743-751.
    [26] Chen L Q, Jean W Z. Solvability condition in multi-scale analysis of gyroscopic continua[J]. Journal of Sound and Vibration, 2008, 309(1/2): 338-342.
  • 加载中
计量
  • 文章访问数:  1615
  • HTML全文浏览量:  142
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-09
  • 修回日期:  2012-02-29
  • 刊出日期:  2012-06-15

目录

    /

    返回文章
    返回