留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非局部因子和表面效应对微纳米材料振动特性的影响

徐晓建 邓子辰

徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013, 34(1): 10-17. doi: 10.3879/j.issn.1000-0887.2013.01.002
引用本文: 徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013, 34(1): 10-17. doi: 10.3879/j.issn.1000-0887.2013.01.002
XU Xiao-jian1, DENG Zi-chen1. Surface Effects of AdsorptionInduced Resonance Analysis of Micro/Nanobeams via Nonlocal Elasticity[J]. Applied Mathematics and Mechanics, 2013, 34(1): 10-17. doi: 10.3879/j.issn.1000-0887.2013.01.002
Citation: XU Xiao-jian1, DENG Zi-chen1. Surface Effects of AdsorptionInduced Resonance Analysis of Micro/Nanobeams via Nonlocal Elasticity[J]. Applied Mathematics and Mechanics, 2013, 34(1): 10-17. doi: 10.3879/j.issn.1000-0887.2013.01.002

非局部因子和表面效应对微纳米材料振动特性的影响

doi: 10.3879/j.issn.1000-0887.2013.01.002
基金项目: 国家基础研究计划973基金资助项目(2011CB610300);111引智计划基金资助项目(B07050);国家自然科学基金资助项目(10972182;11172239;10902089);高校博士点基金资助项目(20106102110019);大连理工大学工业装备结构分析国家重点实验室开放基金资助项目(GZ0802)
详细信息
    作者简介:

    徐晓建(1986—),男,河南夏邑人,博士生(E-mail: xuxiaojian@mail.nwpu.edu.cn);邓子辰(1964—),教授,博士生导师(通讯作者. E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: TB123;TB34;O326;O485

Surface Effects of AdsorptionInduced Resonance Analysis of Micro/Nanobeams via Nonlocal Elasticity

  • 摘要: 基于非局部理论和表面效应模型,导出表面吸附物对微纳米材料的动力学方程,研究非局部因子和表面能对微纳米传感器振动特性的影响.结果显示,非局部因子、表面能、吸附物种类、附加刚度和基底种类对微纳米结构的振动特性有重要影响.
  • [1] Goeders K M,Colton J S,Bottomley L A. Microcantilevers: sensing chemical interactions via mechanical motion[J]. Chemical Reviews,2008,108(2):522-542.
    [2] Alvarez M, Lechuga L M. Microcantilever-based platforms as biosensing tools[J].Analyst,2010,135(5): 827-836.
    [3] Eom K,Park H S,Yoon D S, Kwon T.Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles[J].Physics Reports,2011,503(4/5): 115-163.
    [4] Hagan M F, Majumdar A, Chakraborty A K. Nanomechanical forces generated by surface grafted DNA[J]. The Journal of Physical Chemistry B,2002,106(39): 10163-10173.
    [5] Dareing D W, Thundat T.Simulation of adsorption induced stress of a microcantilever sensor[J]. Journal of Applied Physics,2005,97(4): 043526:1-5.
    [6] Eom K,Kwon T Y,Yoon D S,Lee H L,Kim T S.Dynamical response of nanomechanical resonators to biomolecular interactions[J].Physical Review B,2007,76(11):113408:1-4.
    [7] Huang G Y, Gao W, Yu S W.Model for the adsorptioninduced change in resonance frequency of a cantilever[J].Applied Physics Letters,2006,89(4):043506:1-4.
    [8] Zang J, Liu F.Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors [J].Nanotechnology,2007,18(40):405501:1-4.
    [9] Zang J, Liu F.Modified Timoshenko formula for bending of ultrathin strained bilayer films[J].Applied Physics Letters,2008,92(2):021905:1-3.
    [10] Zhang J Q, Yu S W, Feng X Q, Wang G F.Theoretical analysis of adsorptioninduced microcantilever bending[J].Journal of Applied Physics,2008,103(9): 093506:1-6.
    [11] Zhang J Q, Yu S W, Feng X Q.Theoretical analysis of resonance frequency change induced by adsorption[J]. Journal of Physics D:Applied Physics,2008,41(12):125306:1-8.
    [12] Gheshlaghi B, Hasheminejad S M. Adsorptioninduced resonance frequency shift in Timoshenko microbeams[J].Current Applied Physics,2011,11(4):1035-1041.
    [13] Yi X, Duan H L. Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors[J]. Journal of the Mechanics and Physics of Solids,2009,57(8):1254-1266.
    [14] Feng L, Gao F, Liu M, Wang S, Li L, Shen M, Wang Z. Investigation of the mechanical bending and frequency shift induced by adsorption and temperature using micro and nanocantilever sensors[J]. Journal of Applied Physics,2012,112(1): 013501:1-9.
    [15] Wang C M, Zhang Y Y, Xiang Y, Reddy J N. Recent studies on buckling of carbon nanotubes[J]. Applied Mechanics Reviews,2010,63(3): 030804-030818.
    [16] Eringen A.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics,1983,54(9):4703-4710.
    [17] Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology[J].International Journal of Engineering Science,2003,41(3/5):305-312.
    [18] Wang Q, Zhou G Y, Lin K C. Scale effect on wave propagation of doublewalled carbon nanotubes[J].International Journal of Solids and Structures,2006,43(20):6071-6084.
    [19] Zhang Y Q, Liu G R, Wang J S. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression[J]. Physical Review B,2004,70(20): 205430:1-6.
    [20] Zhang Y Q, Liu G R, Xie X Y. Free transverse vibrations of doublewalled carbon nanotubes using a theory of nonlocal elasticity[J]. Physical Review B,2005,71(19):195404:1-7.
    [21] Wang K F, Wang B L. The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects[J].EPL (Europhysics Letters),2012,97(6):66005:1-6.
    [22] Juntarasaid C, Pulngern T, Chucheepsakul S. Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity[J]. Physica E: Low-Dimensional Systems and Nanostructures,2012,46:68-76.
    [23] Lee H L, Chang W J. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory[J]. Journal of Applied Physics,2010,108(9): 093503:1-3.
    [24] Lei XW, Natsuki T, Shi JX, Ni QQ. Surface effects on the vibrational frequency of doublewalled carbon nanotubes using the nonlocal Timoshenko beam model[J]. Composites Part B: Engineering,2011,43(1): 64-69.
    [25] Wang K F, Wang B L. Vibration of nanoscale plates with surface energy via nonlocal elasticity[J].Physica E: LowDimensional Systems and Nanostructures,2011,44(2): 448-453.
    [26] Gheshlaghi B,Hasheminejad S M.Vibration analysis of piezoelectric nanowires with surface and small scale effects[J].Current Applied Physics,2012,12(4):1096-1099.
    [27] Wang L. Vibration analysis of fluidconveying nanotubes with consideration of surface effects[J].Physica E: LowDimensional Systems and Nanostructures,2010,43(1): 437-439.
    [28] Wang G F, Feng X Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams[J].Applied Physics Letters,2007,90(23):231904:1-3.
    [29] He J, Lilley C M. Surface stress effect on bending resonance of nanowires with different boundary conditions[J]. Applied Physics Letters,2008,93(26): 263108:1-3.
    [30] Shenoy V B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces[J]. Physical Review B, 2005,71(9):094104:1-11.
    [31] Abbasion S, Rafsanjani A, Avazmohammadi R, Farshidianfar A. Free vibration of microscaled Timoshenko beams[J]. Applied Physics Letters,2009,95(14):143122:1-3.
  • 加载中
计量
  • 文章访问数:  1761
  • HTML全文浏览量:  14
  • PDF下载量:  1456
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-14
  • 修回日期:  2012-11-22
  • 刊出日期:  2013-01-15

目录

    /

    返回文章
    返回