## 留言板

 引用本文: 张鹏, 王卓, 黄仕进. 交通流流体力学模型与非线性波[J]. 应用数学和力学, 2013, 34(1): 85-97.
ZHANG Peng, WANG Zhuo, S.C.Wong. Fluid Dynamics Traffic Flow Models and Their Related Non-Linear Waves[J]. Applied Mathematics and Mechanics, 2013, 34(1): 85-97. doi: 10.3879/j.issn.1000-0887.2013.01.009
 Citation: ZHANG Peng, WANG Zhuo, S.C.Wong. Fluid Dynamics Traffic Flow Models and Their Related Non-Linear Waves[J]. Applied Mathematics and Mechanics, 2013, 34(1): 85-97.

• 中图分类号: O29

## Fluid Dynamics Traffic Flow Models and Their Related Non-Linear Waves

• 摘要: 介绍了交通流问题中的流体力学描述方法，分析了交通流在受压力和自驱动力等因素作用下所产生的非线性波动现象．这些描述包括LWR运动学模型，考虑动力学效应的高阶模型，考虑超车效应的多车种LWR(Lighthill-Whitham-Richards)模型，以及考虑流通量间断的模型方程．此外，还介绍了LWR网络推广模型在交叉口的Riemann问题求解；提出了描述二维行人流问题的Navier-Stokes-Eikon方程模型并描述了确定行人流运动期盼方向的基本思想．
•  [1] Lighthill M J , Whitham G B. On kinematic waves—Ⅱ: a theory of traffic flow on long crowded roads[J].Proc Roy Soc A, 1955,229(1178):317-345. [2] Richards P I. Shockwaves on the highway[J].Operations Research,1956,4(1): 42-51. [3] Whitham G B. Linear and Nonlinear Waves[M].New York:John Wiley and Sons,1974. [4] LeVeque R J. Finite Volume Methods for Hyperbolic Problems[M].Cambridge:Cambridge University Press, 2002. [5] Payne H J. Models of freeway traffic and control[C]//Bekey A G. Mathematical Models of Public Systems. La Jola: Simulation Council Proc,1971,1: 51-61. [6] Kühne R D. Macroscopic freeway model for dense traffic-stop-start waves and incident detection[C]//Volmuller J, Hamerslag R.Proc 9th Int Symp on Transp and Traffic Theory.Utrecht: VNU Science Press,1984: 21-42. [7] Kerner B S, Konhuser P. Structure and parameters of clusters in traffic flow[J].Phys Rev E,1994,50(1):54-83. [8] Aw A, Rascle M. Resurrection of “second order” models of traffic flow?[J]. SIAM J Appl Math,2000,60(3):916-938. [9] Rascle M. An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model[J]. Mathematical and Computer Modelling,2002,35(5/6):581-590. [10] Kerner B S, Klenov S L, Konhauser P. Asymptotic theory of traffic jams[J]. Phys Rev E,1997,56(4):4199-4216. [11] Kurtze D A, Hong D C. Traffic jams, granular flow and soliton selection[J]. Phys Rev E,1995,52(1):218-221. [12] Zhang P,Wong S C, Dai S Q. Characteristic parameters of a wide cluster in a higher-order traffic flow model[J]. Chinese Physics Letters, 2006, 23(2): 516-519. [13] Zhang P, Wong S C. Essence of conservation forms in the traveling wave solutions of higherorder traffic flow models[J]. Physical Review E,2006,74(2):026109. [14] Xu R Y, Zhang P, Dai S Q, Wong S C. Admissibility of a wide cluster solution in anisotropic higher-order traffic flow models[J]. SIAM Journal on Applied Mathematics,2007,68(2):562-573. [15] Greenberg J M. Congestion redux[J]. SIAM J Appl Math,2004,64(4):1175-1185. [16] Siebel F, Mauser W. On the fundamental diagram of traffic flow[J].SIAM J Appl Math, 2006, 66(4):1150-1162. [17] Zhang P, Wong S C, Dai S Q. A conserved higher-order anisotropic traffic flow model: description of equilibrium and non-equilibrium flows[J]. Transportation Research Part B,2009,43(5):562-574. [18] Zhang P, Liu R X, Wong S C. High-resolution numerical approximation of traffic flow problems with variable lanes and free flow velocities[J]. Physical Review E,2005,71(5):056704. [19] Wong G C K, Wong S C. A multi-class traffic flow model—an extension of LWR model with heterogeneous drivers[J]. Transportation Research Part A, 2002,36(9):827-841. [20] Zhang P, Liu R X, Wong S C, Dai S Q. Hyperbolicity and kinematic waves of a class of multipopulation partial differential equations[J]. Eur J Appl Math, 2006, 17: 171-200. [21] Zhang M, Shu C W, Wong G C K, Wong S C. A weighted essentially non-oscillatory numerical scheme for a multiclass LighthillWhithamRichards traffic flow model[J].J of Computational Phys,2003,191(2): 639-659. [22] Bürger R, Kozakevicius A. Adaptive multiresolution WENO schemes for multispecies kinematic flow models[J]. Journal of Computational Physics, 2003, 224(2): 1190-1222. [23] Donat R, Mulet P. Characteristicbased schemes for multi-class Lighthill-Whitham-Richards traffic models[J]. Journal of Scientific Computing, 2008, 37(3): 233-250. [24] Zhang P, Liu R X. Hyperbolic conservation laws with space-dependent flux—Ⅰ: characteristics theory and Riemann problem[J]. J Comput Appl Math, 2003, 156(1): 1-21. [25] Zhang P, Wong S C, Shu C W. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway[J]. J Comput Phys, 2006, 212(2): 739-756. [26] Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M].Berlin: Springer, 1999. [27] Cockburn B, Shu C W. RungeKutta discontinuous Galerkin methods for convectiondominated problems[J]. Journal of Scientific Computing, 2001, 16(3): 173-261. [28] Shu C W. High order weighted essentially nonoscillatory schemes for convection dominated problems[J]. SIAM Review, 2009, 51(1): 82-126. [29] Zhang P, Liu R X. Hyperbolic conservation laws with spacedependent flux—Ⅱ: general study on numerical fluxes[J]. J Comput Appl Math, 2005, 176(1): 105-129. [30] Zhang P, Liu R X. Generalization of RungeKutta discontinuous Galerkin method to LWR traffic flow model with inhomogeneous road conditions[J]. Numer Meth Partial Diff Equ, 2005, 21(1): 80-88. [31] Xu Z L, Zhang P, Liu R X. δ-mapping algorithm coupled with WENO reconstruction for nonlinear elasticity in heterogeneous media[J]. Applied Numerical Mathematics, 2007, 57(1): 103-116. [32] Zhang P, Wong S C, Xu Z L. A hybrid scheme for solving a multiclass traffic flow model with complex wave breaking[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45/48): 3816-3827. [33] Karlsen K H, Risebro N H, Towers J D.Upwind difference approximations for degenerate parabolic convectiondiffusion equations with a discontinuous coefficient[J].IMA J Numer Anal,2002,22(4): 623-664. [34] Herty M, Seaid M, Singh A K. A domain decomposition method for conservation laws with discontinuous flux function[J]. Applied Numerical Mathematics, 2007,57(4): 361-373. [35] Bürger R, Gracía A, Karlsen K H, Towers J D. A family of numerical schemes for kinematic flows with discontinuous flux[J]. Journal of Engineering Mathematics,2008, 60(3/4): 387-425. [36] Holden H, Risebro N H. A mathematical model of traffic flow on a network of unidirectional roads[J]. SIAM Journal on Mathematical Analysis, 1995, 26(4):999-1017. [37] Coclite G M, Garavello M, Piccoli B. Traffic flow on a road network[J]. SIAM Journal on Mathematical Analysis, 2005, 36(6): 1862-1886. [38] Lebacque J P. The Godunov scheme and what it means for first order traffic flow models[C]//Lesort J B. Proceedings of the Thirteenth International Symposium on Transportation and Traffic Theory. Lyon: France, 1996. [39] Daganzo C F. The cell transmission model—part Ⅱ: network traffic[J]. Transportation Research Part B, 1995, 29(2): 79-93. [40] Piccoli B, Garavello M. Traffic Flow on Networks[M]. AIMS on Applied Math,2006. [41] Bretti G, Natalini R, Piccoli B. Numerical approximations of a traffic flow model on networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 57-84. [42] Helbing D. Traffic and related self-driven manyparticle systems[J]. Rev Mod Phys, 2001, 73(4):1067-1141. [43] Burstedde C, Klauck K, Schadschneider A, Zittartz J. Simulation of pedestrian dynamics using a twodimensional cellular automaton[J]. Physica A, 2001, 295(3/4): 507-520. [44] Hughes R L. A continuum theory for the flow of pedestrians[J].Transport Res Part B, 2002, 36(6):507-536. [45] Xia Y, Wong S C, Zhang M, Shu C W, Lam W H K. An effcient discontinuous Galerkin method on triangular meshes for a pedestrian flow model[J]. International Journal for Numerical Methods in Engineering, 2008, 76(3): 337-350. [46] Huang L, Wong S C, Zhang M, Shu C W, Lam W H K. Revisiting Hughes’dynamic continuum model for pedestrian flow and the development of an effcient solution algorithm[J]. Transportation Research Part B, 2009, 43(1): 127-141. [47] Bellomo N, Dogbé C. On the modelling crowd dynamics from scaling to hyperbolic macroscopic models[J]. Mathematical Models and Methods in Applied Sciences, 2008, 18(1): 1317-1345. [48] Xiong T, Zhang P, Wong S C, Shu C W, Zhang M. A macroscopic approach to the lane formation phenomenon in pedestrian counterflow[J]. Chinese Physical Letters, 2011, 28(10): 108901. [49] Zhang P, Jian X X, Wong S C, Choi K. Potential field cellular automata model for pedestrian flow[J]. Physical Review E, 2012, 85(2): 021119.

##### 计量
• 文章访问数:  2172
• HTML全文浏览量:  43
• PDF下载量:  2098
• 被引次数: 0
##### 出版历程
• 收稿日期:  2012-11-19
• 修回日期:  2012-12-10
• 刊出日期:  2013-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈