| [1] | Lighthill M J , Whitham G B. On kinematic waves—Ⅱ: a theory of traffic flow on long crowded roads[J].Proc Roy Soc A, 1955,229(1178):317-345. | 
		
				| [2] | Richards P I. Shockwaves on the highway[J].Operations Research,1956,4(1): 42-51. | 
		
				| [3] | Whitham G B. Linear and Nonlinear Waves[M].New York:John Wiley and Sons,1974. | 
		
				| [4] | LeVeque R J. Finite Volume Methods for Hyperbolic Problems[M].Cambridge:Cambridge University Press, 2002. | 
		
				| [5] | Payne H J. Models of freeway traffic and control[C]//Bekey A G. Mathematical Models of Public Systems. La Jola: Simulation Council Proc,1971,1: 51-61. | 
		
				| [6] | Kühne R D. Macroscopic freeway model for dense traffic-stop-start waves and incident detection[C]//Volmuller J,   Hamerslag R.Proc 9th Int Symp on Transp and Traffic Theory.Utrecht: VNU Science Press,1984: 21-42. | 
		
				| [7] | Kerner  B S, Konhuser P. Structure and parameters of clusters in traffic flow[J].Phys Rev E,1994,50(1):54-83. | 
		
				| [8] | Aw A, Rascle M. Resurrection of “second order” models of traffic flow?[J]. SIAM J Appl Math,2000,60(3):916-938. | 
		
				| [9] | Rascle M. An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model[J]. Mathematical and Computer Modelling,2002,35(5/6):581-590. | 
		
				| [10] | Kerner B S,  Klenov S L, Konhauser P. Asymptotic theory of traffic jams[J]. Phys Rev E,1997,56(4):4199-4216. | 
		
				| [11] | Kurtze D A, Hong D C. Traffic jams, granular flow and soliton selection[J]. Phys Rev E,1995,52(1):218-221. | 
		
				| [12] | Zhang P,Wong S C, Dai S Q. Characteristic parameters of a wide cluster in a higher-order traffic flow model[J]. Chinese Physics Letters, 2006, 23(2): 516-519. | 
		
				| [13] | Zhang P, Wong S C. Essence of conservation forms in the traveling wave solutions of higherorder traffic flow models[J]. Physical Review E,2006,74(2):026109. | 
		
				| [14] | Xu R Y, Zhang P, Dai S Q, Wong S C. Admissibility of a wide cluster solution in anisotropic higher-order traffic flow models[J]. SIAM Journal on Applied Mathematics,2007,68(2):562-573. | 
		
				| [15] | Greenberg J M. Congestion redux[J]. SIAM J Appl Math,2004,64(4):1175-1185. | 
		
				| [16] | Siebel F, Mauser W. On the fundamental diagram of traffic flow[J].SIAM J Appl Math, 2006, 66(4):1150-1162. | 
		
				| [17] | Zhang P, Wong S C, Dai S Q. A conserved higher-order anisotropic traffic flow model: description of equilibrium and non-equilibrium flows[J]. Transportation Research Part B,2009,43(5):562-574. | 
		
				| [18] | Zhang P, Liu R X, Wong S C. High-resolution numerical approximation of traffic flow problems with variable lanes and free flow velocities[J]. Physical Review E,2005,71(5):056704. | 
		
				| [19] | Wong G C K, Wong S C. A multi-class traffic flow model—an extension of LWR model with heterogeneous drivers[J]. Transportation Research Part A, 2002,36(9):827-841. | 
		
				| [20] | Zhang P, Liu R X, Wong S C, Dai S Q. Hyperbolicity and kinematic waves of a class of multipopulation partial differential equations[J]. Eur J Appl Math, 2006, 17: 171-200. | 
		
				| [21] | Zhang M,  Shu C W, Wong G C K, Wong S C. A weighted essentially non-oscillatory numerical scheme for a multiclass LighthillWhithamRichards traffic flow model[J].J of Computational Phys,2003,191(2): 639-659. | 
		
				| [22] | Bürger R, Kozakevicius A. Adaptive multiresolution WENO schemes for multispecies kinematic flow models[J]. Journal of Computational Physics, 2003, 224(2): 1190-1222. | 
		
				| [23] | Donat R,  Mulet P. Characteristicbased schemes for multi-class Lighthill-Whitham-Richards traffic models[J]. Journal of Scientific Computing, 2008, 37(3): 233-250. | 
		
				| [24] | Zhang P, Liu R X. Hyperbolic conservation laws with space-dependent flux—Ⅰ: characteristics theory and Riemann problem[J]. J Comput Appl Math, 2003, 156(1): 1-21. | 
		
				| [25] | Zhang P, Wong S C, Shu C W. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway[J]. J Comput Phys, 2006, 212(2): 739-756. | 
		
				| [26] | Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M].Berlin: Springer, 1999. | 
		
				| [27] | Cockburn B, Shu C W. RungeKutta discontinuous Galerkin methods for convectiondominated problems[J]. Journal of Scientific Computing, 2001, 16(3): 173-261. | 
		
				| [28] | Shu C W.  High order weighted essentially nonoscillatory schemes for convection dominated problems[J]. SIAM Review, 2009, 51(1): 82-126. | 
		
				| [29] | Zhang P, Liu R X. Hyperbolic conservation laws with spacedependent flux—Ⅱ: general study on numerical fluxes[J]. J Comput Appl Math, 2005, 176(1): 105-129. | 
		
				| [30] | Zhang P, Liu R X. Generalization of RungeKutta discontinuous Galerkin method to LWR traffic flow model with inhomogeneous road conditions[J]. Numer Meth Partial Diff Equ, 2005, 21(1): 80-88. | 
		
				| [31] | Xu Z L, Zhang P, Liu R X. δ-mapping algorithm coupled with WENO reconstruction for nonlinear elasticity in heterogeneous media[J]. Applied Numerical Mathematics, 2007, 57(1): 103-116. | 
		
				| [32] | Zhang P, Wong S C, Xu Z L. A hybrid scheme for solving a multiclass traffic flow model with complex wave breaking[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45/48): 3816-3827. | 
		
				| [33] | Karlsen K H, Risebro N H, Towers J D.Upwind difference approximations for degenerate parabolic convectiondiffusion equations with a discontinuous coefficient[J].IMA J Numer Anal,2002,22(4): 623-664. | 
		
				| [34] | Herty M, Seaid M, Singh A K. A domain decomposition method for conservation laws with discontinuous flux function[J]. Applied Numerical Mathematics, 2007,57(4): 361-373. | 
		
				| [35] | Bürger R, Gracía A, Karlsen K H, Towers J D. A family of numerical schemes for kinematic flows with discontinuous flux[J]. Journal of Engineering Mathematics,2008, 60(3/4): 387-425. | 
		
				| [36] | Holden H, Risebro N H. A mathematical model of traffic flow on a network of unidirectional roads[J]. SIAM Journal on Mathematical Analysis, 1995, 26(4):999-1017. | 
		
				| [37] | Coclite G M, Garavello M, Piccoli B. Traffic flow on a road network[J]. SIAM Journal on Mathematical Analysis, 2005, 36(6): 1862-1886. | 
		
				| [38] | Lebacque J P. The Godunov scheme and what it means for first order traffic flow models[C]//Lesort J B. Proceedings of the Thirteenth International Symposium on Transportation and Traffic Theory.  Lyon: France, 1996. | 
		
				| [39] | Daganzo C F. The cell transmission model—part Ⅱ: network traffic[J]. Transportation Research Part B, 1995, 29(2): 79-93. | 
		
				| [40] | Piccoli B, Garavello M. Traffic Flow on Networks[M]. AIMS on Applied Math,2006. | 
		
				| [41] | Bretti G, Natalini R, Piccoli B. Numerical approximations of a traffic flow model on networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 57-84. | 
		
				| [42] | Helbing D. Traffic and related self-driven manyparticle systems[J]. Rev Mod Phys, 2001, 73(4):1067-1141. | 
		
				| [43] | Burstedde C, Klauck K, Schadschneider A, Zittartz J. Simulation of pedestrian dynamics using a twodimensional cellular automaton[J]. Physica A, 2001, 295(3/4): 507-520. | 
		
				| [44] | Hughes R L. A continuum theory for the flow of pedestrians[J].Transport Res Part B, 2002, 36(6):507-536. | 
		
				| [45] | Xia Y, Wong S C, Zhang M, Shu C W, Lam W H K. An effcient discontinuous Galerkin method on triangular meshes for a pedestrian flow model[J]. International Journal for Numerical Methods in Engineering, 2008, 76(3): 337-350. | 
		
				| [46] | Huang L, Wong S C, Zhang M, Shu C W, Lam W H K. Revisiting Hughes’dynamic continuum model for pedestrian flow and the development of an effcient solution algorithm[J]. Transportation Research Part B, 2009, 43(1): 127-141. | 
		
				| [47] | Bellomo N, Dogbé C. On the modelling crowd dynamics from scaling to hyperbolic macroscopic models[J]. Mathematical Models and Methods in Applied Sciences, 2008, 18(1): 1317-1345. | 
		
				| [48] | Xiong T, Zhang P, Wong S C, Shu C W, Zhang M. A macroscopic approach to the lane formation phenomenon in pedestrian counterflow[J]. Chinese Physical Letters, 2011, 28(10): 108901. | 
		
				| [49] | Zhang P, Jian X X, Wong S C, Choi K. Potential field cellular automata model for pedestrian flow[J]. Physical Review E, 2012, 85(2): 021119. |