留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合层无粘稳定性分析的Legendre级数解

郭欣 王娴 许丁 谢公南

郭欣, 王娴, 许丁, 谢公南. 混合层无粘稳定性分析的Legendre级数解[J]. 应用数学和力学, 2013, 34(8): 782-794. doi: 10.3879/j.issn.1000-0887.2013.08.002
引用本文: 郭欣, 王娴, 许丁, 谢公南. 混合层无粘稳定性分析的Legendre级数解[J]. 应用数学和力学, 2013, 34(8): 782-794. doi: 10.3879/j.issn.1000-0887.2013.08.002
GUO Xin, WANG Xian, XU Ding, XIE Gong-nan. Legendre Series Solution to Rayleigh Stability Equation of Mixing Layer[J]. Applied Mathematics and Mechanics, 2013, 34(8): 782-794. doi: 10.3879/j.issn.1000-0887.2013.08.002
Citation: GUO Xin, WANG Xian, XU Ding, XIE Gong-nan. Legendre Series Solution to Rayleigh Stability Equation of Mixing Layer[J]. Applied Mathematics and Mechanics, 2013, 34(8): 782-794. doi: 10.3879/j.issn.1000-0887.2013.08.002

混合层无粘稳定性分析的Legendre级数解

doi: 10.3879/j.issn.1000-0887.2013.08.002
基金项目: 国家自然基金资助项目(11102150; 11242010);中央高校基本科研业务费专项资金资助项目
详细信息
    作者简介:

    郭欣 (1981—),女,西安人,工程师,硕士(E-mail: guoxin285@126.com);许丁 (1980—),男,西安人,讲师,博士(通讯作者. E-mail: dingxu@mail.xjtu.edu.cn).

  • 中图分类号: O351;TB126

Legendre Series Solution to Rayleigh Stability Equation of Mixing Layer

  • 摘要: 基于泛函分析中的不动点理论,采用不动点方法首次获得混合层无粘线性稳定性方程的显式Legendre级数解,该级数解在整个无界流动区域内一致有效.现有基于传统摄动法得到的无界流动区域一致有效解仅适用于长波扰动和中性扰动两种特殊情况,而使用不动点方法可以得到所有不稳定扰动波数的特征解.另外,在不动点方法框架下,扰动相速度和扰动增长率可根据方程的可解性条件来唯一确定.为了验证该方法的有效性,将该方法和现有文献中的数值计算结果相比较,对比结果表明该方法具有精度高、收敛快等优点.
  • [1] 罗纪生, 吕祥翠. 超音速混合层稳定性分析及增强混合的研究[J].力学学报, 2004, 36 (2): 202-207. (LUO Ji-sheng, Lü Xiang-cui. Investigation on stability of 3-D supersonic mixing layer and method of enhancing the mixing[J].Acta Mechanica Sinica,2004, 36 (2): 202-207.(in Chinese))
    [2] 倪慧, 罗纪生, 何立忠. 三维可压缩混合层中扰动演化的研究[J].空气动力学学报, 2004, 22-(4): 416421.(NI Hui, LUO Ji-sheng, HE Li-zhong. An investigation for the evolvement of disturbances in 3-D compressible mixing layer[J].Acta Aerodynamica Sinica,2004, 22 (4): 416-421.(in Chinese))
    [3] 潘宏禄, 马汉东, 王强. 高对流Mach数三维混合层转捩特性分析及小激波结构模拟[J].空气动力学学报, 2008, 26 (3): 275-281.(PAN Hong-lu, MA Han-dong, WANG Qiang. Transition coherent structures and shocklets in 3-D spatial developing mixing layers at high convective Mach numbers[J].Acta Aerodynamica Sinica,2008, 26 (3): 275-281.(in Chinese))
    [4] 杨武兵, 庄逢甘, 沈清, 易仕和, 何霖, 赵玉新. 超声速混合层中扰动增强混合实验[J].力学学报, 2010, 42 (3): 373-382. (YANG Wu-bing, ZHUANG Feng-gan, SHEN Qing, YI Shi-he, HE Lin, ZHAO Yu-xin. Experimental study on perturbation mixing enhancement in supersonic mixing layers[J].Acta Mechanica Sinica,2010, 42 (3): 373-382.(in Chinese))
    [5] 周强, 何枫, 沈孟育. 可压缩混合层中的涡结构和激波[J].空气动力学学报, 2010, 28 (3): 245-249. (ZHOU Qiang, HE Feng, SHEN Meng-yu. Vortex structures and shocks in the compressible mixing layer[J].Acta Aerodynamica Sinica,2010, 28 (3): 245-249.(in Chinese))
    [6] Criminale W, Jackson T, Joslin R.Theory and Computation of Hydrodynamic Stability [M]. United Kingdom:Cambridge University Press, 2003.
    [7] Michalke A. The instability of free shear layers[J]. Progress in Aerospace Sciences,1972, 12 (1): 213-216.
    [8] Ho C M, Huerre P. Perturbed free shear layers[J]. Annual Review of Fluid Mechanics,1984, 16 (1): 365-422.
    [9] Betchov R, Szewczyk A. Stability of a shear layer between parallel streams[J]. Physics of Fluids,1963, 6 (10): 1391-1396.
    [10] Drazin P G, Howard L N. Hydrodynamic stability of parallel flow of inviscid fluid[J].Advances in Applied Mechanics,1966, 9 (1): 1-89.
    [11] Drazin P G, Howard L N. The instability to long waves of unbounded parallel inviscid flow[J].J Fluid Mech,1962, 14 (2): 257-283.
    [12] Michalke A. On the inviscid instability of the hyperbolic tangent velocity profile[J]. J Fluid Mech,1964, 19 (4): 543-556.
    [13] Drazin P G, Reid W H.Hydrodynamic Stability [M]. United Kingdom:Cambridge University Press, 2004.
    [14] Heisenberg W. ber stabilitat und turbulenz von flüssigkeitsstromen[J]. Ann Phys,1924, 74 (4): 577-627.
    [15] Tollmien W.The Production of Turbulence[M]. Washington:NACATM609, 1931.
    [16] Tatsumi T, Gotoh K, Ayukawa K. The stability of a free boundary layer at large Reynolds numbers[J].Journal of the Physical Society of Japan,1964, 19 (10): 1966.
    [17] Peyret R.Spectral Methods for Incompressible Viscous Flow [M]. New York:Springer, 2002.
    [18] Hussaini M Y, Zang T A. Spectral methods in fluid dynamics[J]. Annual Review of Fluid Mechanics,1987, 19 (1): 339-367.
    [19] Canuto C, Hussaini M Y, Quarteroni A, Zang T A.Spectral Methods:Fundamentals in Single Domains [M]. Berlin: Springer, 2006.
    [20] Xu D, Guo X. Fixed point analytical method for nonlinear differential equations[J]. J Comput Nonlinear Dyn,2013, 8 (1): 011005.
    [21] Zeidler E.Nonlinear Functional Analysis and Its ApplicationsⅠ: FixedPoint Theorems [M]. New York: Springer,1986.
    [22] Orszag S A. Accurate solution of the orr-sommerfeld stability equation[J]. J Fluid Mech,1971, 50 (4): 689-703.
    [23] Burden R L, Faires J D.Numerical Analysis [M]. Boston:Brooks Cole, 2010.
    [24] Garcia R V. Barotropic waves in straight parallel flow with curved velocity profile[J]. Tellus,1956, 8 (1): 82-93.
    [25] Boguslawski A. Inviscid instability of the hyperbolic-tangent velocity profilespectral“tau”solution[J]. Task Quarterly,2001, 5 (2): 155-164.
  • 加载中
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  35
  • PDF下载量:  1147
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-30
  • 修回日期:  2013-06-15
  • 刊出日期:  2013-08-15

目录

    /

    返回文章
    返回