## 留言板

 引用本文: 王睿星, 王晓军, 王磊, 邱志平. 几种结构非概率可靠性模型的比较研究[J]. 应用数学和力学, 2013, 34(8): 871-880.
WANG Rui-xing, WANG Xiao-jun, WANG Lei, QIU Zhi-ping. Comparisons of Several Non-Probabilistic Models for Structural Reliability[J]. Applied Mathematics and Mechanics, 2013, 34(8): 871-880. doi: 10.3879/j.issn.1000-0887.2013.08.011
 Citation: WANG Rui-xing, WANG Xiao-jun, WANG Lei, QIU Zhi-ping. Comparisons of Several Non-Probabilistic Models for Structural Reliability[J]. Applied Mathematics and Mechanics, 2013, 34(8): 871-880.

• 中图分类号: O302

## Comparisons of Several Non-Probabilistic Models for Structural Reliability

• 摘要: 相对概率可靠性模型和模糊可靠性模型，基于区间分析的结构非概率可靠性模型对数据的要求低，因此在实际工程中对非概率可靠性模型的研究越来越重要．近年来，非概率可靠性理论得到了很好的发展和完善．该文综述了已有的4种主要的非概率可靠性模型，针对线性结构功能函数，分别从度量原理、可靠性指标物理意义、适用范围和结果精度等方面对各可靠性模型进行比较与总结；针对非线性结构功能函数，对各可靠性模型的适用性进行了初步的讨论，从而对非概率可靠性模型有更加全面和深刻的理解，为实际工程中非概率可靠性模型的选取提供重要的理论依据．
•  [1] 郭书祥, 吕震宇, 冯元生. 基于区间分析的机构非概率可靠性模型[J]. 计算机力学报, 2001, 18(1): 56-60. (GUO Shu-xiang, Lü Zhen-yu, FENG Yuan-sheng. A non-probabilistic model of structural reliability based on interval analysis[J]. Chinese Journal of Computation Mechanics,2001, 18(1): 56-60. (in Chinese)) [2] Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from AM Freudenthal’s criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56(6): 871-895. [3] 孙海龙, 姚卫星. 结构区间可靠性分析的可能度法[J]. 中国机械工程, 2001, 19(11): 1483-1487.(SUN Hai-long, YAO Wei-xing. Possibility degree method for structural interval reliability analysis[J]. China Mechanical Engineering, 2001, 19(11): 1483-1487.(in Chinese)) [4] 王晓军, 邱志平, 武哲. 结构非概率集合可靠性模型[J]. 力学学报, 2007, 39(5): 641-646. (WANG Xiao-jun, QIU Zhi-ping, WU Zhe. Non-probabilistic set-based model for structural reliability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 641-646. (in Chinese)) [5] 洪东跑, 马小兵, 赵宇, 申力娟. 基于容差分析的结构非概率可靠性模型[J]. 力学学报, 2010, 46(4): 157-162. (HONG Dong-pao, MA Xiao-bing, ZHAO Yu, SHEN Li-juan. Non-probabilistic model for structural reliability based on tolerance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 46(4): 157-162.(in Chinese)) [6] BenHaim Y, Elishakoff I. Convex Models of Uncertainty in Applied Mechanics [M]. Amsterdam: Elsevier Science Publisher, 1990. [7] QIU Zhi-ping, WANG Xiao-jun. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis[J]. International Journal of Solids and Structures, 2005, 42(18/19): 4958-4970. [8] QIU Zhi-ping, WANG Xiao-jun. Interval analysis method and convex models for impulsive response of structures with uncertain-but-bounded external loads[J].Acta Mechanica Sinica, 2006, 22(3): 265-276. [9] 王晓军, 杨海峰, 邱志平, 覃梓轩. 基于非概率集合可靠性的结构优化设计[J]. 计算力学学报, 2011,28(6): 827-832. (WANG Xiao-jun, YANG Hai-feng, QIU Zhi-ping, QIN Zi-xuan. Structural optimization design based on non-probabilistic set-theoretic reliability[J]. Chinese Journal of Computational Mechanics, 2011, 28(6): 827-832.(in Chinese)) [10] 王晓军, 邱志平. 结构振动的鲁棒可靠性[J]. 北京航空航天大学学报, 2003, 29(11): 1006-1010. (WANG Xiao-jun, QIU Zhi-ping. Robust reliability of structural vibration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 1006-1010. (in Chinese)) [11] WANG Xiao-jun, WANG Lei, Elishakoff I, QIU Zhi-ping. Probability and convexity concepts are not antagonistic[J].Acta Mechanica, 2011, 219(12): 45-64. [12] Wang X J, Qiu Z P, Elishakoff I. Non-probabilistic setmodel for structural safety measure[J]. Acta Mechanica, 2008, 198: 51-64. [13] 乔心州, 仇原鹰, 孔宪光. 一种基于椭球凸集的结构非概率可靠性模型. 工程力学, 2009, 26(11): 203-208. (QIAO Xin-zhou, QIU Yuan-ying, KONG Xian-guang. A non-probabilistic model of structural reliability based on ellipsoidal convex model[J]. Engineering Mechanics, 2009, 26(11): 203-208. (in Chinese))

##### 计量
• 文章访问数:  1243
• HTML全文浏览量:  25
• PDF下载量:  1201
• 被引次数: 0
##### 出版历程
• 收稿日期:  2012-09-17
• 修回日期:  2013-06-24
• 刊出日期:  2013-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈