## 留言板

 引用本文: 陈小超, 毛崎波, 薛晓理. 基于广义函数空间的不连续梁振动分析[J]. 应用数学和力学, 2014, 35(1): 81-91.
CHEN Xiao-chao, MAO Qi-bo, XUE Xiao-li. Free Vibration Analysis of Elastic Foundation Euler Beams With Different Discontinuities Based on Generalized Functions[J]. Applied Mathematics and Mechanics, 2014, 35(1): 81-91. doi: 10.3879/j.issn.1000-0887.2014.01.009
 Citation: CHEN Xiao-chao, MAO Qi-bo, XUE Xiao-li. Free Vibration Analysis of Elastic Foundation Euler Beams With Different Discontinuities Based on Generalized Functions[J]. Applied Mathematics and Mechanics, 2014, 35(1): 81-91.

## 基于广义函数空间的不连续梁振动分析

##### doi: 10.3879/j.issn.1000-0887.2014.01.009

###### 作者简介:陈小超（1988—），男，重庆人，硕士生(通讯作者. E-mail: keithiscxc@gmail.com)
• 中图分类号: O32;TB123;O29

## Free Vibration Analysis of Elastic Foundation Euler Beams With Different Discontinuities Based on Generalized Functions

Funds: The National Natural Science Foundation of China(51265037); The Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
• 摘要: 首先运用广义函数建立了轴向力作用下含任意不连续点的弹性基础Euler(欧拉)梁的自由振动的统一微分方程.不连续点的影响由广义函数（Dirac delta函数）引入梁的振动方程.微分方程运用Laplace变换方法求解；与传统方法不同的是，该文方法求得的模态函数为整个不连续梁的一般解.由于模态函数的统一化以及连续条件的退化，特征值的求解得到了极大地简化.最后，以梁质量块模型和轴向力作用下弹性基础裂纹梁模型为例验证了该文方法的正确性与有效性.
•  [1] Lee J. Identification of multiple cracks in a beam using natural frequencies[J]. Journal of Sound and Vibration,2009,320(3): 482-490. [2] Lee J. Identification of multiple cracks in a beam using vibration amplitudes[J]. Journal of Sound and Vibration,2009,326(1/2): 205-212. [3] Hsu M-H. Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(1): 1-17. [4] Mao Q. Free vibration analysis of multiple-stepped beams by using Adomian decomposition method[J]. Mathematical and Computer Modelling,2011,54(1/2): 756-764. [5] Mao Q. Free vibration analysis of elastically connected multiple-beams by using the Adomian modified decomposition method[J]. Journal of Sound and Vibration,2012,331(11): 2532-2542. [6] Mao Q, Pietrzko S. Free vibration analysis of stepped beams by using Adomian decomposition method[J]. Applied Mathematics and Computation,2010,217(7): 3429-3441. [7] Mao Q, Pietrzko S. Free vibration analysis of a type of tapered beams by using Adomian decomposition method[J]. Applied Mathematics and Computation,2012,219(6): 3264-3271. [8] Dimarogonas A D. Vibration of cracked structures: a state of the art review[J]. Engineering Fracture Mechanics,1996,55(5): 831-857. [9] Shifrin E, Ruotolo R. Natural frequencies of a beam with an arbitrary number of cracks[J]. Journal of Sound and Vibration,1999,222(3): 409-423. [10] Khiem N, Lien T. A simplified method for natural frequency analysis of a multiple cracked beam[J]. Journal of Sound and Vibration,2001,245(4): 737-751. [11] Li Q. Vibratory characteristics of multi-step beams with an arbitrary number of cracks and concentrated masses[J]. Applied Acoustics,2001,62(6): 691-706. [12] Li Q. Free vibration analysis of non-uniform beams with an arbitrary number of cracks and concentrated masses[J]. Journal of Sound and Vibration,2002,252(3): 509-525. [13] Binici B. Vibration of beams with multiple open cracks subjected to axial force[J].Journal of Sound and Vibration,2005,287(1): 277-295. [14] Gürgoze M. On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system[J]. Journal of Sound and Vibration,1996,190(2): 149-162. [15] Yavari A, Sarkani S, Moyer Jr E T. On applications of generalized functions to beam bending problems[J]. International Journal of Solids and Structures,2000,37(40): 5675-5705. [16] Yavari A, Sarkani S, Reddy J. Generalized solutions of beams with jump discontinuities on elastic foundations[J]. Archive of Applied Mechanics,2001,71(9): 625-639. [17] Wang J, Qiao P. Vibration of beams with arbitrary discontinuities and boundary conditions[J]. Journal of Sound and Vibration,2007,308(1): 12-27. [18] Wang J, Qiao P. On irregularity-based damage detection method for cracked beams[J].International Journal of Solids and Structures,2008,45(2): 688-704. [19] Mao Q, Pietrzko S. Control of Noise and Structural Vibration: A MATLAB-Based Approach [M]. Springer, 2013. [20] Maiz S, Bambill D V, Rossit C A, Laura P A A. Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: exact solution[J]. Journal of Sound and Vibration,2007,303(3/5): 895-908.
##### 计量
• 文章访问数:  1447
• HTML全文浏览量:  130
• PDF下载量:  871
• 被引次数: 0
##### 出版历程
• 收稿日期:  2013-08-28
• 修回日期:  2013-09-23
• 刊出日期:  2014-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈