留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性管涡致振动的理论模型与数值模拟

冯志鹏 臧峰刚 张毅雄 余晓菲 叶献辉

冯志鹏, 臧峰刚, 张毅雄, 余晓菲, 叶献辉. 弹性管涡致振动的理论模型与数值模拟[J]. 应用数学和力学, 2014, 35(5): 581-588. doi: 10.3879/j.issn.1000-0887.2014.05.012
引用本文: 冯志鹏, 臧峰刚, 张毅雄, 余晓菲, 叶献辉. 弹性管涡致振动的理论模型与数值模拟[J]. 应用数学和力学, 2014, 35(5): 581-588. doi: 10.3879/j.issn.1000-0887.2014.05.012
FENG Zhi-peng, ZANG Feng-gang, ZHANG Yi-xiong, YU Xiao-fei, YE Xian-hui. Theoretical Model and Numerical Simulation of Vortex Induced Flexible Tube Vibration[J]. Applied Mathematics and Mechanics, 2014, 35(5): 581-588. doi: 10.3879/j.issn.1000-0887.2014.05.012
Citation: FENG Zhi-peng, ZANG Feng-gang, ZHANG Yi-xiong, YU Xiao-fei, YE Xian-hui. Theoretical Model and Numerical Simulation of Vortex Induced Flexible Tube Vibration[J]. Applied Mathematics and Mechanics, 2014, 35(5): 581-588. doi: 10.3879/j.issn.1000-0887.2014.05.012

弹性管涡致振动的理论模型与数值模拟

doi: 10.3879/j.issn.1000-0887.2014.05.012
详细信息
    作者简介:

    冯志鹏(1986—),男,甘肃会宁人,工程师,博士(通讯作者. E-mail: zhipengfeng1@163.com).

  • 中图分类号: O322

Theoretical Model and Numerical Simulation of Vortex Induced Flexible Tube Vibration

  • 摘要: 针对弹性管的涡致振动问题,分别在双向流固耦合模拟得到的流体力系数以及尾流振子模型的基础上,采用Euler-Bernoulli梁模型模拟弹性管,得到了弹性管涡致振动的运动方程,提出两种预测弹性管涡致振动的理论模型.首先通过4阶Galerkin方法离散系统的运动方程,采用由双向流固耦合数值模拟得出的流体力数据,预测了弹性管在横向流体作用下的振动响应;其次,引入尾流振子模型模拟弹性管与漩涡脱落间的耦合作用,并将预测结果与流固耦合模拟结果进行了对比分析.结果显示,采用谐和形式流体力的理论模型预测得到的结果偏小,而尾流振子模型能较好地模拟弹性管的涡致振动特性,预测结果比得上双向流固耦合得到的结果,说明尾流振子模型用于弹性管的漩涡脱落诱发振动是可行的和合理的.
  • [1] 冯志鹏, 张毅雄, 臧峰刚. 直管束流固耦合振动的数值模拟[J]. 应用数学和力学, 2013,34(11): 1165-1172.(FENG Zhi-peng, ZHANG Yi-xiong, ZANG Feng-gang. Numerical simulation of fluid-structure interaction for tube bundles[J].Applied Mathematics and Mechanics,2013,34(11): 1165-1172.(in Chinese))
    [2] Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J].Journal of Sound and Vibration,2005,282: 575-616.
    [3] Khalak A, Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J].Journal of Fluids and Structures,1996,10(5): 455-472.
    [4] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids and Structures,1988,2(4): 355-381.
    [5] 吴学敏, 黄维平. 考虑大变形的大柔性立管涡激振动模型[J]. 振动与冲击, 2013,32(18): 21-25, 30.(WU Xue-min, HUANG Wei-ping. A new model for predicting vortex-induced vibration of a long flexible riser with large deformation[J].Journal of Vibration and Shock,2013,32(18): 21-25, 30.(in Chinese))
    [6] Facchinetti M L, de Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J].Journal of Fluids and Structures,2004,19(2): 123-140.
    [7] Violette R, de Langre E, Szydlowski J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments[J].Computers and Structures,2007,85(11/14): 1134-1141.
    [8] 冯志鹏, 张毅雄, 臧峰刚, 叶献辉. 三维弹性管的涡致振动特性分析[J]. 应用数学和力学, 2013,34(9): 976-985.(FENG Zhi-peng, ZHANG Yi-xiong, ZANG Feng-gang, YE Xian-hui. Analysis of vortex-induced vibration characteristics for a three dimensional flexible tube[J].Applied Mathematics and Mechanics,2013,34(9): 976-985.(in Chinese))
    [9] Chen S S.Flow-Induced Vibration of Circular Cylindrical Structures [M]. Washington D C: Hemisphere Publishing Corporation, 1987.
  • 加载中
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  141
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2014-03-06
  • 刊出日期:  2014-05-15

目录

    /

    返回文章
    返回