## 留言板

 引用本文: 付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014, 35(11): 1197-1209.
FU Bao-lian. Corrected Reciprocal Theorem of Works for Bending Thin Plates and Its Application[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1197-1209. doi: 10.3879/j.issn.1000-0887.2014.11.003
 Citation: FU Bao-lian. Corrected Reciprocal Theorem of Works for Bending Thin Plates and Its Application[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1197-1209.

• 中图分类号: TU311

## Corrected Reciprocal Theorem of Works for Bending Thin Plates and Its Application

• 摘要: 研究发现，弯曲薄板Betti(贝蒂)的功的互等定理命题中的两个主要前提，“一个弯曲薄板”和“两组力的作用”是相互矛盾的，因为两组力的任意一组力都可以改变“一个弯曲薄板”成为另外一个弯曲薄板.这一矛盾导致弯曲薄板Betti的功的互等定理是一个具有逻辑错误的定理.基于对这一矛盾的分析，提出了修正的功的互等定理，在该定理中，给出了弯曲薄板的功的互等定理的正确命题.同时，该修正的功的互等定理为功的互等法提供了理论基础，功的互等法是结构分析的一个新颖的和强有力的方法.
•  [1] Maxwell J C. On calculation of the equilibrium and stiffness of frames[J]. Philosophical Magazine Series 4,1864,27(182): 294-299. [2] Betti E. Teoria Della elasticita’[J]. Nuovo Cimento,1872,7/8(1): 69-97. [3] Тимошенко С П.Сопротивление МатериаловⅠ[M]. Москва: Ннаука, 1965: 297.(Timoshenko S P. Strength of Materials Part Ⅰ [M]. 3rd ed. Pricenton New Jersey, Toronto, New York, London: D Van Nostrand Company, Inc. 1965: 297.(in Russian)) [4] Lamb H. On reciprocal theorems in dynamics[J]. Proceedings of the London Mathematical Society,1887,1(1): 144-151. [5] Aндреев Н Н. Теорема взаимностн в теорий колебаний и акустике[J].Физ Словарь,1936,1: 458-459.(Andleev N N. Reciprocal theorem in theory of vibration and sound[J]. Phy Dictionary,1936,1: 458-459. (in Russian)) [6] 胡海昌. 论弹性动力学中的倒易定理及它的一些应用[J]. 力学学报, 1957,1(1): 63-71.(HU Hai-chang. On reciprocal theorem in elasto-dynamics and its some applications[J]. Mechanica Sinica,1957,1(1): 63-71.(in Chinese)) [7] Payton R G. An application of the dynamic Betti-Rayleigh reciprocal theorem to moving point load in elastic media[J]. Quarterly of Applied Mathematics,1964,21(4): 299-313. [8] Iesan D. On reciprocal theorems and variational theorems in linear elasto-dynamicis[J]. Bulletin de l’Academie des Sciences, Serie des Sciences Techniques,1974,22: 273-281. [9] Айнола Л Я. К теореме взаимности для динамических задач теории упргости[J]. Прикладная Математика и Mеханика,1967,31(1): 176-182.(Ainora L Y. On reciprocal theorem for dynamic problems of elasticity[J]. Journal of Applied Mathematics and Mechanics,1967,31(1): 176-182.(in Russian)) [10] 付宝连. 关于功的互等定理与叠加原理的等价性[J]. 应用数学和力学, 1985,6(9): 813-818.(FU Bao-lian. On equivalent of the reciprocal theorem to superposition principles[J]. Applied Mathematics and Mechanics,1985,6(9): 813-818.(in Chinese)) [11] 付宝连. 广义倒易定理及其应用[J]. 应用数学和力学, 2002,23(2): 188-194.(FU Bao-lian. Generalized reciprocal theorem and its applications[J]. Applied Mathematics and Mechanics,2002,23(2): 188-194.(in Chinese)) [12] 付宝连. 求解位移方程的一个新方法[C]//东北重型机械学院第三届科学报告会,1981,3: 45-56.(FU Bao-lian. A new approach for solving displacement equations[C]// Third Scientific Report Conference of Northeast Heavy Machinery Institute,1981,3: 45-56.(in Chinese)) [13] 付宝连. 应用功的互等定理求解具有复杂边界条件的矩形板的挠曲面方程[J]. 应用数学和力学, 1982, 3（3）: 315-325.（FU Bao-lian. Applications of reciprocal theorem to solving the equations of deflection surface of rectangular plates with various edge conditions[J]. Applied Mathematics and Mechanics, 1982,3(3）: 315-325.（in Chinese）） [14] 付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅰ)——四边固定的矩形板和三边固定的矩形板[J]. 应用数学和力学, 1989,10（8）: 693-714.（FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅰ)—rectangular plates with four clamped edges and with three clamped edges[J]. Applied Mathematics and Mechanics,1989,10 (8): 693-714. （in Chinese）） [15] 付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅱ)——两邻边固定的矩形板[J]. 应用数学和力学, 1990,11(11): 977-988.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅱ)—rectangular plates with two adjacent clamped edges[J]. Applied Mathematics and Mechanics,1990,11 (11): 977-988.（in Chinese）） [16] 付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅲ)——悬臂矩形板[J]. 应用数学和力学, 1991,12(7): 613-620.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅲ)—cantilever rectangular plates[J]. Applied Mathematics and Mechanics,1991,12(7): 613-620.（in Chinese）） [17] 付宝连. 应用功的互等定理法求立方体的位移解[J]. 应用数学和力学, 1989,10(4): 297-308.(FU Bao-lian. Application of the method of the reciprocal theorem to finding displacement solutions of cubes[J]. Applied Mathematics and Mechanics,1989,10(4): 297-308.(in Chinese）） [18] 付宝连. 关于求解弹性力学平面问题的功的互等定理法[J]. 应用数学和力学, 1989,10(5): 437-446.(FU Bao-lian. On the method of reciprocal theorem to finding solutions of the plane problems of elasticity[J]. Applied Mathematics and Mechanics,1989,10(5): 437-446.(in Chinese）） [19] Love A E H. Treatise on the Mathematical Theory of Elasticity[M]. 4th ed. New York: Dover Publication, 1944. [20] Timoshenko S P, Goodier J N. Theory of Elasticity[M]. 3rd ed. McGraw-Hill Book Company, 1970. [21] 钱伟长, 叶开沅. 弹性力学[M]. 北京: 科学出版社, 1980.(CHIEN Wei-zang, YEH Kai-yuan. Mechanies of Elasticity [M]. Beijing: Science Press, 1980.(in Chinese)) [22] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.（ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity[M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese)） [23] Fung Y C. Foundation of Solid Mechanics [M]. New Jersey: Prentice-Hall, Inc Englewood Cliffs, 1965. [24] Wang Chi-teh. Applied Elasticity[M]. McGRaw-Hill Publishing Company LTD ,1956. [25] 胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981.（HU Hai-chang. Variational Principles in Elastic Mechanics and Its Applications[M]. Beijing: Science Press, 1981.(in Chinese) [26] 张福范. 弹性薄板[M]. 第2版. 北京: 科学出版社, 1984.（ZHANG Fu-fan. Elastic Thin Plats[M]. 2nd ed. Beijing: Science Press, 1984.(in Chinese)）

##### 计量
• 文章访问数:  1225
• HTML全文浏览量:  86
• PDF下载量:  896
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-03-07
• 修回日期:  2014-07-07
• 刊出日期:  2014-11-18

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈