留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lagrange柱坐标高阶中心型守恒格式

葛全文

葛全文. Lagrange柱坐标高阶中心型守恒格式[J]. 应用数学和力学, 2014, 35(11): 1218-1231. doi: 10.3879/j.issn.1000-0887.2014.11.005
引用本文: 葛全文. Lagrange柱坐标高阶中心型守恒格式[J]. 应用数学和力学, 2014, 35(11): 1218-1231. doi: 10.3879/j.issn.1000-0887.2014.11.005
GE Quan-wen. Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1218-1231. doi: 10.3879/j.issn.1000-0887.2014.11.005
Citation: GE Quan-wen. Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1218-1231. doi: 10.3879/j.issn.1000-0887.2014.11.005

Lagrange柱坐标高阶中心型守恒格式

doi: 10.3879/j.issn.1000-0887.2014.11.005
基金项目: 国家自然科学基金(11172050;11372051;11001027)
详细信息
    作者简介:

    葛全文(1960—),男,吉林人,副研究员,博士(Tel: +86-10-59872671; E-mail: ge_quanwen@iapcm.ac.cn).

  • 中图分类号: O354;O242

Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry

Funds: The National Natural Science Foundation of China(11172050; 11372051; 11001027)
  • 摘要: 提出Lagrange柱坐标高阶中心型守恒格式.基于用对守恒律的单调迎风算法(MUSCL)构造的高阶子网格压力,引入了柱坐标高阶体权子网格力和柱坐标高阶面权子网格力,构造了柱坐标高阶体权中心型守恒格式和柱坐标高阶面权中心型格式.柱坐标高阶体权中心型守恒格式满足动量守恒、能量守恒,但不能确定保持一维球对称性.柱坐标高阶面权中心型格式满足能量守恒,保持一维球对称性.两种格式里,格点速度以与网格面的数值通量相容的方式计算.对Saltzman活塞问题等进行了数值模拟,数值结果显示Lagrange柱坐标高阶中心型守恒格式的有效性和精确性.
  • [1] von Neumann J, Richtmyer R D. A method for the numerical calculations of hydrodynamical shocks[J].J Appl Phys,1950,21(3):232-238.
    [2] Wilkins M L.Calculation of Elastic Plastic Flow, Methods in Computationnal Physics[M]. Vol3. New York and London: Berni Alder Academic Press, 1964: 211-263.
    [3] Campbell J C, Shashov J C. A tensor artificial viscosity using a mimetic finite difference algorithm[J].Journal of Computational Physics,2001,172(2): 739-765.
    [4] Caramana E J, Burton D E, Shashov M J, Whalen P P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J].Journal of Computational Physics,1998,146(1): 227-262.
    [5] Campbell J C, Shashov M J. A compatible Lagrangian hydrodynamics algorithm for unstructured grids[J]. Selcuk J Appl Math,2003,4: 53-70.
    [6] Caramana E J, Shashkov M J. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures[J].Journal of Computational Physics,1998,142(2): 521-561.
    [7] Noh W F. Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux[J]. Journal of Computational Physics,1987,72(1): 78-120.
    [8] Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multi-dimensional shock wave computations[J].Journal of Computational Physics,2009,144(1): 70-97.
    [9] Maire P H, Loubère R, Vachal P. Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme[J].Journal of Computational Physics,2011,10(4): 940-978.
    [10] Loubère R, Maire P H, Vachal P. A second order compatible staggered Lagrangian hydrodynamics scheme using cell-centered multi directional Riemann solver[J].Proc Comput Sci,2010,1(1): 1931-1939.
    [11] Morgan N R, Lipnikov K N, Burton D E, Kenamond M A. A Lagrangian staggered grid Godunov-like approach for hydrodynamics[J].Journal of Computational Physics,2014,259: 568-597.
    [12] 葛全文. Lagrange非结构网格高阶交错型守恒气体动力学格式[J]. 应用数学和力学, 2014,35(1): 92-101.(GE Quan-wen. A Lagrangian high order staggered conservative gasdynamics scheme on unstructured meshes[J].Applied Mathematics and Mechanics,2014,35(1): 92-101.(in Chinese))
    [13] Dukowicz J K, Meltz B. Vorticity errors in multidimensional Lagrangian codes[J].Journal of Computational Physics,1992,99(1): 115-134.
    [14] Després B, Mazeran C. Lagrangian gas dynamics in two dimensions and Lagrangian systems[J].Archive for Rational Mechanics and Analysis,2005,178(3): 327-372.
    [15] Carré G, Delpino S, Després B, Labourasse E. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[J].Journal of Computational Physics,2009,228(14): 5160-5183.
    [16] Maire P H, Abgrall R, Breil J, Ovadia J. A cell-centered Lagrangian scheme for two-dimensional compressible low problems[J].SIAM Journal on Scientific Computing,2007,29(4): 1781-1824.
    [17] Shen Z J ,Yuan G W, Yue J Y, Liu X Z. A cell-centered Lagrangian scheme in two-dimensional cylindrical geometry[J].Science in China, Series A: Mathematics,2008,51(8): 1479-1494.
    [18] 葛全文. Lagrange中心型守恒格式[J]. 应用数学和力学, 2012,33(10): 1239-1256.(GE Quan-wen. A Lagrangian cell-centered conservative scheme[J].Applied Mathematics and Mechanics,2012,33(10): 1239-1256.
    [19] Maire P H, Breil J. A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J].International Journal for Numerical Methods in Fluids,2008,56(8): 1417-1423.
    [20] GE Quan-wen. High-order Lagrangian cell-centered conservative scheme on unstructured meshes[J].Applied Mathematics and Mechanics(English Edition),2014,35(9): 1203-1222.
    [21] Maire P H. A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry[J].Journal of Computational Physics,2009,228(18): 6882-6915.
  • 加载中
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  117
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-01
  • 修回日期:  2014-09-11
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回