留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无晨昏电场下带电粒子在中性片磁场中运动的周期轨

陈丽娟 鲁世平

陈丽娟, 鲁世平. 无晨昏电场下带电粒子在中性片磁场中运动的周期轨[J]. 应用数学和力学, 2014, 35(11): 1280-1286. doi: 10.3879/j.issn.1000-0887.2014.11.011
引用本文: 陈丽娟, 鲁世平. 无晨昏电场下带电粒子在中性片磁场中运动的周期轨[J]. 应用数学和力学, 2014, 35(11): 1280-1286. doi: 10.3879/j.issn.1000-0887.2014.11.011
CHEN Li-juan, LU Shi-ping. Periodic Orbits of Electric Particles Sporting in Neutral Sheet Magnetic Field Without Dawn-Dusk Electric Field[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1280-1286. doi: 10.3879/j.issn.1000-0887.2014.11.011
Citation: CHEN Li-juan, LU Shi-ping. Periodic Orbits of Electric Particles Sporting in Neutral Sheet Magnetic Field Without Dawn-Dusk Electric Field[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1280-1286. doi: 10.3879/j.issn.1000-0887.2014.11.011

无晨昏电场下带电粒子在中性片磁场中运动的周期轨

doi: 10.3879/j.issn.1000-0887.2014.11.011
基金项目: 国家自然科学基金(11271197);江苏省普通高校研究生科研创新计划(CXLX13-502)
详细信息
    作者简介:

    陈丽娟(1973—),女,江苏靖江人,副教授,博士生(通讯作者. E-mail: cljung@sohu.com).

  • 中图分类号: O193

Periodic Orbits of Electric Particles Sporting in Neutral Sheet Magnetic Field Without Dawn-Dusk Electric Field

Funds: The National Natural Science Foundation of China(11271197)
  • 摘要: 为了描述无晨昏电场情况下带电粒子在中性片磁场非小扰动区中运动的动力学特征,建立了一个非线性的动力学系统.运用Mawhin重合度理论探讨了一类非线性问题的周期解, 然后将其应用于无晨昏电场情况下带电粒子在远磁尾中性片磁场非小扰动区中运动的动力学模型的周期解问题的研究, 得出了带电粒子在初始位置逐渐远离中性片运动过程中存在周期轨的结果.在此基础上,还可以进一步探讨该模型同宿轨等其它动力学行为的存在性问题.
  • [1] Volland H. Models of global electric fields within the magnetosphere[J].Annales de Geophysique,1975,31(1): 154-163.
    [2] Chen J. Nonlinear dynamics of charge particle in the magnetotail[J].Journal of Geophysical Research,1992,97(A10): 15011-15017.
    [3] XU Rong-lan, ZHU Ming. Particle precipitation from the magnetotail during substorm[J].Scientia Sinica, A,1995,38(1): 92-106.
    [4] Tsyganenko N A. Modeling the Earth’s magnetosphere magnetic field confined within a realistic magnetopause[J].Journal of Geophysical Research: Space Physics,1995,100(A4): 5599-5615.
    [5] 徐荣栏. 带电粒子在中性线磁场中运动的解析轨道[J]. 空间科学学报, 1981,1(1): 1-8.(XU Rong-lan. The analytical orbits of charged particles sporting in neutral sheet magnetic field[J].Chinese Journal of Space Science,1981,1(1): 1-8.(in Chinese))
    [6] 徐荣栏, 宛振福, 马福胜. 带电粒子在中性线磁场中的运动[J]. 地球物理学报, 1980,23(3): 233-241.(XU Rong-lan, WAN Zhen-fu, MA Fu-sheng. The sporting of charged particles in neutral sheet magnetic field[J].Chinese Journal of Geophysics,1980,23(3): 233-241.(in Chinese))
    [7] XU Rong-lan. The analytical trajectory of the charged particle moving in neutral sheet magnetic field[J].Proceeding of an International School and Workshop of Plasma Astrophysics,1981,7: 421-429.
    [8] XU Rong-lan. Particle dynamics and current in the magnetotail[J].Astrophysics and Space Sciences,1988,144(1/2): 257-277.
    [9] 徐荣栏, 李磊. 磁层粒子动力学[M]. 北京: 科学出版社, 2005.(XU Rong-lan, LI Lei.Dynamics of Magnetosphere Particle[M]. Beijing: Science Press, 2005.(in Chinese))
    [10] XU Rong-lan. Displayed neutral sheet model observed by the ISEE-2 satellite[J].Journal Atmosphere and Terrestrial Physics,1991,53: 12-23.
    [11] MO Jia-qi. A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters[J].Chinese Physics B,2010,19(1): 010203-1-010203-4.
    [12] CHENG Rong-jun, GE Hong-xia. Analysis of the equal width wave equation with the mesh-free reproducing kernel particle Ritz method[J].Chinese Physics B,2012,21(10): 100209-1-100209-8.
    [13] 王坤, 关新平, 乔杰敏. 一类相对转动非线性动力学系统周期解的唯一性与精确周期解[J]. 物理学报, 2010,59(6): 3648-3653.(WANG Kun, GUAN Xin-ping, QIAO Jie-min. Precise periodic solutions and uniqueness of periodic solutions of some relative rotation nonlinear dynamic system[J].Acta Physica Sinica,2010,59(6): 3648-3653.(in Chinese))
    [14] 陈丽娟, 鲁世平. 一类太空等离子体单粒子运动模型的同宿轨[J]. 应用数学和力学, 2013,34(12): 1258-1265.(CHEN Li-juan, LU Shi-ping. Homoclinic orbit of the motion model for a single space plasma particle[J].Applied Mathematics and Mechanics,2013,34(12): 1258-1265.(in Chinese))
    [15] 陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题[J]. 物理学报, 2013,62(20): 200201-1-200201-4.(CHEN Li-juan, LU Shi-ping. The problem of periodic solution of nonlinear model in zero-dimensional climate system[J].Acta Physica Sinica,2013,62(20): 200201-1-200201-4.(in Chinese))
    [16] Gaines R E, Mawhin J L.Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.
    [17] LU Shi-ping. Homoclinic solutions for a nonlinear second-order differential systems with p-Laplacian operator[J].Nonlinear Analysis,2011,12(1): 525-534.
  • 加载中
计量
  • 文章访问数:  804
  • HTML全文浏览量:  66
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-11
  • 修回日期:  2014-09-22
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回