留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内共振下超临界输液管受迫振动响应

毛晓晔 丁虎 陈立群

毛晓晔, 丁虎, 陈立群. 内共振下超临界输液管受迫振动响应[J]. 应用数学和力学, 2016, 37(4): 345-351. doi: 10.3879/j.issn.1000-0887.2016.04.002
引用本文: 毛晓晔, 丁虎, 陈立群. 内共振下超临界输液管受迫振动响应[J]. 应用数学和力学, 2016, 37(4): 345-351. doi: 10.3879/j.issn.1000-0887.2016.04.002
MAO Xiao-ye, DING Hu, CHEN Li-qun. Forced Vibration Responses of Supercritical Fluid-Conveying Pipes in 3∶1 Internal Resonance[J]. Applied Mathematics and Mechanics, 2016, 37(4): 345-351. doi: 10.3879/j.issn.1000-0887.2016.04.002
Citation: MAO Xiao-ye, DING Hu, CHEN Li-qun. Forced Vibration Responses of Supercritical Fluid-Conveying Pipes in 3∶1 Internal Resonance[J]. Applied Mathematics and Mechanics, 2016, 37(4): 345-351. doi: 10.3879/j.issn.1000-0887.2016.04.002

内共振下超临界输液管受迫振动响应

doi: 10.3879/j.issn.1000-0887.2016.04.002
基金项目: 国家自然科学基金(重点项目)(11232009);国家自然科学基金(11372171;11422214)
详细信息
    作者简介:

    毛晓晔(1987—),男,硕士生(E-mail: maoxiaoye1987920@aliyun.com);丁虎(1978—),男,研究员,博士生导师(通讯作者. E-mail: dinghu3@shu.edu.cn).

  • 中图分类号: O32

Forced Vibration Responses of Supercritical Fluid-Conveying Pipes in 3∶1 Internal Resonance

Funds: The National Natural Science Foundation of China(Key Program)(11232009);The National Natural Science Foundation of China(11372171;11422214)
  • 摘要: 首次研究了超临界流速输液管在3∶1内共振条件下的稳态幅频响应.考虑超临界速度引起的管道屈曲位形,建立描述连续体非线性振动的偏微分积分方程.通过Galerkin截断方法,将连续体方程离散化.对于同时含有平方与立方非线性的多自由度系统,发展高阶多尺度法建立可解性条件.稳态幅频响应曲线揭示了内共振条件下,不同模态间能量的转移.最后,数值仿真结果验证了近似解析分析的有效性.
  • [1] Padoussis M P. Flow induced instability of cylindrical structures[J]. ASME Applied Mechanics Reviews,1987,40(2): 163-175.
    [2] 黄玉盈, 邹时智, 钱勤, 徐鉴, 李琳. 输液管的非线性振动、分叉与混沌——现状与展望[J]. 力学进展, 1998,28(1): 30-42.(HUANG Yu-ying, ZOU Shi-zhi, QIAN Qin, XU Jian, LI Lin. Advances and trends of nonlinear dynamics of pipes conveying fluid[J]. Advances in Mechanics,1998,28(1): 30-42.(in Chinese))
    [3] 徐鉴, 杨前彪. 输液管模型及其非线性动力学近期研究进展[J]. 力学进展, 2004,34(2): 182-194.(XU Jian, YANG Qian-biao. Recent development on models and nonlinear dynamics of pipes conveying fluid[J]. Advances in Mechanics,2004,34(2): 182-194.(in Chinese))
    [4] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换[J]. 应用数学和力学, 2006,27(7): 819-824.(XU Jian, YANG Qian-biao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid [J]. Applied Mathematics and Mechanics,2006,27(7): 819-824.(in Chinese))
    [5] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换[J]. 应用数学和力学, 2006,27(7): 825-832.(XU Jian, YANG Qian-biao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid [J]. Applied Mathematics and Mechanics,2006,27(7): 825-832.(in Chinese))
    [6] Pa?doussis M P, Issid N T. Dynamic stability of pipes conveying fluid[J]. Journal of Sound and Vibration,1974,33(3): 267-294.
    [7] Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York: Wiley, 1979.
    [8] 席红敏, 张伟, 姚明辉. 变流速输液管的周期和混沌运动[J]. 动力学与控制学报, 2008,6(3): 243-246.(XI Hong-min, ZHANG Wei, YAO Ming-hui. Periodic and chaotic oscillations of the fluid conveying pipes with pulse fluid[J]. Journal of Dynamics and Control,2008,6(3): 243-246.(in Chinese))
    [9] ZHANG Yan-lei, CHEN Li-qun. Internal resonance of pipes conveying fluid in the supercritical regime[J]. Nonlinear Dynamics,2012,67(2): 1505-1514.
    [10] CHEN Li-qun, ZHANG Yan-lei. Multi-scale analysis on nonlinear gyroscopic systems with multi-degree-of-freedoms[J].Journal of Sound and Vibration,2014,333(19): 4711-4723.
    [11] CHEN Li-qun, ZHANG Yan-lei, ZHANG Guo-ce, DING Hu. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed[J]. International Journal of Non-Linear Mechanics,2014,58: 11-21.
    [12] 黄慧春, 张艳雷, 陈立群. 受迫振动的超临界输液管Galerkin数值模拟[J]. 应用数学和力学,2014,35(10): 1100-1106.(HUANG Hui-chun, ZHANG Yan-lei, CHEN Li-qun. A Galerkin numerical method for the pipe conveying supercritical fluid under forced vibration[J]. Applied Mathematics and Mechanics,2014,35(10): 1100-1106.(in Chinese))
    [13] 张国策, 丁虎, 陈立群. 复模态分析超临界轴向运动梁横向非线性振动[J]. 动力学与控制学报,2015,13(4): 283-285.(ZHANG Guo-ce, DING Hu, CHEN Li-qun. Complex modal analysis of transversally non-linear vibration for supercritically axially moving beams[J]. Journal of Dynamics and Control,2015,13(4): 283-285.(in Chinese))
    [14] 熊柳杨, 张国策, 丁虎, 陈立群. 黏弹性屈曲梁非线性内共振稳态周期响应[J]. 应用数学和力学, 2014,35(11): 1188-1196.(XIONG Liu-yang, ZHANG Guo-ce, DING Hu, CHEN Li-qun. Steady-state periodic responses of a viscoelastic buckled beam in nonlinear internal resonance[J]. Applied Mathematics and Mechanics,2014,35(11): 1188-1196.(in Chinese))
    [15] 赵健, 张国策, 陈立群. 磁振子压电能量采集器的多尺度分析[J]. 应用数学和力学, 2015,36(8): 805-813.(ZHAO Jian, ZHANG Guo-ce, CHEN Li-qun. Multi-scale analysis of piezoelectric energy harvesters with magnetic oscillators[J]. Applied Mathematics and Mechanics,2015,36(8): 805-813.(in Chinese))
    [16] 王珺, 赵环迪, 陈力奋. 预变形对非线性结构响应特征的影响[J]. 动力学与控制学报, 2015,13(3): 188-193.(WANG Jun, ZHAO Huan-di, CHEN Li-fen. Effects of the initial deformation on the dynamic response of local nonlinear systems[J]. Journal of Dynamics and Control,2015,13(3): 188-193.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  39
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-15
  • 修回日期:  2016-03-03
  • 刊出日期:  2016-04-15

目录

    /

    返回文章
    返回