留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形纳米管道中的电动能量转换效率

邢靖楠 菅永军

邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004
引用本文: 邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004
XING Jing-nan, JIAN Yong-jun. Electrokinetic Energy Conversion Efficiency in Rectangular Nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004
Citation: XING Jing-nan, JIAN Yong-jun. Electrokinetic Energy Conversion Efficiency in Rectangular Nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004

矩形纳米管道中的电动能量转换效率

doi: 10.3879/j.issn.1000-0887.2016.04.004
基金项目: 国家自然科学基金(11472140);内蒙古自治区高等学校青年科技英才支持计划(NJYT13A02);非线性力学国家重点实验室开放基金
详细信息
    作者简介:

    邢靖楠(1992—),女,硕士生(E-mail: 1139695829@qq.com);菅永军(1974—),男,教授,博士生导师(通讯作者. E-mail: jianyj@imu.edu.cn).

  • 中图分类号: O361.4

Electrokinetic Energy Conversion Efficiency in Rectangular Nanochannels

Funds: The National Natural Science Foundation of China(11472140)
  • 摘要: 利用分离变量法,研究了矩形纳米管道内流体的流向势及电动能量转换效率.通过求解电势满足的Poisson-Boltzmann(泊松-玻尔兹曼)方程和速度满足的Navier-Stokes(纳维-斯托克斯)方程,得到了矩形纳米管道内流体的流向势和电动能量转换效率的解析表达式.通过数值计算,分析了电动宽度K(矩形管道的宽度与双电层厚度的比值)、纳米管道高度与宽度的展向比α以及壁面Zeta势ζ等无量纲参数对流向势及电动能量转换效率的影响.结果表明,当其他参数固定时,流向势随K的增加而减小.当K较小时,电动能量转换效率随K的增大而增大;当K较大时,电动能量转换效率随K的增大而减小.此外,流向势随展向比α的增大而变大.对于较小的K,电动能量转换效率随α的增大而变大;当K较大时,电动能量转换效率随α增大而减小.最后,当壁面电势ζ增大,流向势变大,相应的电动能量转换效率有显著的增加.
  • [1] Ma H C, Keh H J. Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers[J]. Journal of Colloid and Interface Science,2007,313(2): 686-696.
    [2] Squires T M, Quake S R. Microfluidics: fluid physics at the nanoliter scale[J]. Reviews of Modern Physics,2005,77(3): 977-1026.
    [3] JIAN Yong-jun, LIU Quan-sheng, YANG Lian-gui. AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(21): 1304-1314.
    [4] SU Jie, JIAN Yong-jun, CHANG Long. Thermally fully developed electroosmotic flow through a rectangular microchannel[J]. International Journal of Heat and Mass Transfer,2012,55(21/22): 6285-6290.
    [5] 杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Da-yong, WANG Yang. In microchannel of the electroosmotic flow and micro-mixing of the ion concentration effect[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
    [6] ZHAO Guang-pu, JIAN Yong-jun, CHANG Long, Buren M D L. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field[J]. Journal of Magnetism and Magnetic Materials,2015,387: 111-117.
    [7] Buren M D L, Jian Y J, Chang L. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls[J]. Journal of Physics D: Applied Physics,2014,47(42): 425501.
    [8] Donath E, Voigt E. Steaming current and streaming potential on structured surfaces[J]. Journal of Colloid and Interface Science,1986,109(1): 122-139.
    [9] Starov V M, Solomentsev Y E. Influence of gel layers on electrokinetic phenomena—1: streaming potential[J]. Journal of Colloid and Interface Science,1993,158(1): 159-165.
    [10] Starov V M, Solomentsev Y E. Influence of gel layers on electrokinetic phenomena—2:effect of ions interaction with the gel layer[J]. Journal of Colloid and Interface Science,1993,158(1): 166-170.
    [11] Masliyah J H, Bhattacharjee S. Electrokinetic and Colloid Transport Phenomena [M]. Canada: John Wiley & Sons,2006: 240-253.
    [12] Ohshima H, Kondo T. Electrokinetic flow between two parallel plates with surface charge layers:electro-osmosis and streaming potential[J]. Journal of Colloid and Interface Science,1990,135(2): 443-448.
    [13] 龚磊, 吴健康, 王蕾, 晁侃. 微通道周期流动电位势及电粘性效应[J]. 应用数学和力学, 2008,29(6): 649-656.(GONG Lei, WU Jian-kang, WANG Lei, CHAO Kan. Periodical streaming potential and electro-viscous effects in microchannel flow[J]. Applied Mathematics and Mechanics,2008,29(6): 649-656.(in Chinese))
    [14] Das S, Guha A, Mitra S K. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers[J]. Analytica Chimica Acta,2013,804: 159-166.
    [15] Chen G, Das S. Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Huckel linearization[J]. Journal of Colloid and Interface Science,2015,445: 357-363.
    [16] Daiguji H, Yang P, Szeri A J, Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels[J]. Nano Letters,2004,4(12): 2315-2321.
    [17] Wang M, Kang Q. Electrochemomechancial energy conversion efficiency in silica nanochannels[J]. Microfluidics and Nanofluidics,2010,9(2): 181-190.
    [18] Chanda S, Sinha S, Das S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters[J]. Soft Matter,2014,10(38): 7558-7568.
    [19] Bandopadhyay A, Chakraborty S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids[J]. Applied Physics Letters,2012,101(4): 043905.
    [20] Wambsganss M W, Jendrzejczyk J A, France D M. Two-phase flow patterns and transitions in a small, horizontal, rectangular channel[J]. International Journal of Multiphase Flow,1991,17(3): 327-342.
    [21] Das S, Chakraborty S. Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels[J].Langmuir,2008,24(15): 7704-7710.
  • 加载中
计量
  • 文章访问数:  803
  • HTML全文浏览量:  60
  • PDF下载量:  858
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-11
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-04-15

目录

    /

    返回文章
    返回