留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道内电渗压力混合驱动幂律流体流动模拟

罗艳 李鸣 杨大勇

罗艳, 李鸣, 杨大勇. 微通道内电渗压力混合驱动幂律流体流动模拟[J]. 应用数学和力学, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005
引用本文: 罗艳, 李鸣, 杨大勇. 微通道内电渗压力混合驱动幂律流体流动模拟[J]. 应用数学和力学, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005
LUO Yan, LI Ming, YANG Da-yong. Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005
Citation: LUO Yan, LI Ming, YANG Da-yong. Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005

微通道内电渗压力混合驱动幂律流体流动模拟

doi: 10.3879/j.issn.1000-0887.2016.04.005
基金项目: 国家自然科学基金(11302095)
详细信息
    作者简介:

    罗艳(1990—),女,硕士生(E-mail: 13576997924@163.com);杨大勇(1978—),男,副教授,博士(通讯作者. E-mail: dayongyang@ncu.edu.cn).

  • 中图分类号: O351.2

Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels

Funds: The National Natural Science Foundation of China(11302095)
  • 摘要: 为了研究微通道内电渗压力混合驱动幂律流体的流动特性,建立了微通道内电渗压力混合驱动幂律流体的计算模型,其双电层电势、流体的流场分布分别由Poisson-Boltzmann(P-B)方程和Navier-Stokes(N-S)方程描述.讨论了无量纲Debye(德拜)参数K、壁面ζ*电势和幂律指数n对流体流动特性和Poiseuille数的影响.结果表明,当压力梯度与外加电场方向一致(Γ >0)时,剪切变稀流体的速度大于剪切变稠流体;压力梯度与外加电场方向相反(Γ<0)时,结果相反.Poiseuille数是无量纲Debye常数K、壁面ζ*电势和幂律指数n的增函数.
  • [1] Cheng S B, Skinner C D, Taylor J, Attiya S, Lee W E, Picelli G, Harrison D J. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay[J]. Analytical Chemistry,2001,73(7): 1472-1479.
    [2] Buchholz B A, Doherty E A S, Albarghouthi M N, Bogdan F M, Zahn J M, Barron A E. Microchannel DNA sequencing matrices with a thermally controlled “viscosity switch”[J]. Analytical Chemistry,2001,73(2): 157-164.
    [3] Choban E R, Markoski L J, Wieckowski A, Kenis P J A. Microfluidic fuel cell based on laminar flow[J]. Journal of Power Sources,2004,128(1): 54-60.
    [4] 李战华, 吴健康, 胡国庆, 胡国辉. 微流控芯片中的流体流动[M]. 北京: 科学出版, 2012.(LI Zhan-hua, WU Jian-kang, HU Guo-qing, HU Guo-hui. Fluid Flow in Microfluidic Chips [M]. Beijing: Science Press, 2012.(in Chinese))
    [5] XUAN Xiang-chun, LI Dong-qing. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge[J]. Journal of Colloid and Interface Science,2005,289(1): 291-303.
    [6] Zimmerman W B, Rees J M, Craven T J. Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction[J]. Microfluidics and Nanofluidics,2006,2(6): 481-492.
    [7] Wang J, Wang M, Li Z. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science,2006,296(2): 729-736.
    [8] Tang G H, Li X F, He Y L, Tao W Q. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics,2009,157(1/2): 133-137.
    [9] Tang G H, Ye P X, Tao W Q. Electroviscous effect on non-Newtonian fluid flow in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics,2010,165(7/8): 435-440.
    [10] Hadigol M, Nosrati R, Raisee M. Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,374(1/3): 142-153.
    [11] Hadigol M, Nosrati R, Nourbakhsh A, Raisee M. Numerical study of electroosmotic micromixing of non-Newtonian fluids[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(17/18): 965-971.
    [12] 杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Da-yong, WANG Yang. Effects of ion concentration on electroosmotic flow and micromixing in microchannels[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
    [13] Babaie A, Sadeghi A, Saidi M H. Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(14/15): 792-798.
    [14] Babaie A, Saidi M H, Sadeghi A. Electroosmotic flow of power-law fluids with temperature dependent properties[J]. Journal of Non-Newtonian Fluid Mechanics,2012,185/186: 49-57.
    [15] Brown A B D, Smith C G, Rennie A R. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes[J]. Physical Review E,2000,63(1): 016305.
    [16] Mala G M, LI Dong-qing. Flow characteristics of water in microtubes[J]. International Journal of Heat and Fluid Flow,1999,20(2): 142-148.
    [17] Vocale P, Geri M, Cattani L, Spiga M. Electro-osmotic heat transfer in elliptical microchannels under H1 boundary condition[J]. International Journal of Thermal Sciences,2013,72: 92-101.
    [18] Zhao C, Zholkovskij E, Masliyah J H, Yang C. Analysis of electroosmotic flow of power-law fluids in a slit microchannel[J]. Journal of Colloid and Interface Science,2008,326(2): 503-510.
  • 加载中
计量
  • 文章访问数:  898
  • HTML全文浏览量:  59
  • PDF下载量:  603
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2015-12-21
  • 刊出日期:  2016-04-15

目录

    /

    返回文章
    返回