留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Taylor算子的二元向量切触有理插值

经慧芹

经慧芹. 基于Taylor算子的二元向量切触有理插值[J]. 应用数学和力学, 2016, 37(4): 404-415. doi: 10.3879/j.issn.1000-0887.2016.04.008
引用本文: 经慧芹. 基于Taylor算子的二元向量切触有理插值[J]. 应用数学和力学, 2016, 37(4): 404-415. doi: 10.3879/j.issn.1000-0887.2016.04.008
JING Hui-qin. Bivariate Vector-Valued Osculatory Rational Interpolation Based on the Taylor Operator[J]. Applied Mathematics and Mechanics, 2016, 37(4): 404-415. doi: 10.3879/j.issn.1000-0887.2016.04.008
Citation: JING Hui-qin. Bivariate Vector-Valued Osculatory Rational Interpolation Based on the Taylor Operator[J]. Applied Mathematics and Mechanics, 2016, 37(4): 404-415. doi: 10.3879/j.issn.1000-0887.2016.04.008

基于Taylor算子的二元向量切触有理插值

doi: 10.3879/j.issn.1000-0887.2016.04.008
基金项目: 云南省教育厅科学研究基金重点项目(2015Z043)
详细信息
    作者简介:

    经慧芹(1966—),女,副教授,硕士(E-mail: kmjhq@163.com).

  • 中图分类号: O241.3

Bivariate Vector-Valued Osculatory Rational Interpolation Based on the Taylor Operator

  • 摘要: 提出了一种基于Taylor算子的二元向量切触有理插值的新方法.首先应用已知的节点定义各阶有理插值基函数,再用相应的向量值和各阶偏导数值建立一种类似二元函数Taylor公式的新型插值算子,最后进行组合运算,得出二元向量一阶、二阶切触有理插值函数的显式表达式,并自然推广到k阶情形,还给出了误差估计.算例表明,该方法计算简单,过程公式化,有应用价值.
  • [1] Salzer H E. Note on osculatory rational interpolation[J]. Mathematics of Computation,1962,16(80): 486-491.
    [2] Claessens G. A new algorithm for osculatory rational interpolation[J]. Numerische Mathematik,1976,27(1): 77-83.
    [3] Kahng S W. Osculatory interpolation[J]. Mathematics of Computation,1969,23(107): 621-629.
    [4] Wuytack L. On the osculatory rational interpolation problem[J]. Mathematics of Computation,1975,29(131): 837-843.
    [5] Graves-Morris P R. Vector valued rational interpolants I[J]. Numerische Mathematik,1983,42(3): 331-348.
    [6] Claessens G. A useful identity for the rational Hermite interpolation table[J]. Numerische Mathematik,1978,29(2): 227-231.
    [7] Levrie P, Bultheel A. A note on Thiele n-fractions[J].Numerical Algorithms,1993,4(2): 225-239.
    [8] Debbourgo R. Accurate C2 rational interpolants in tension[J]. SIAM Journal on Numerical Analysis,1993,30(2): 595-607.
    [9] 梁艳, 李美蓉. 矩形网格上切触有理插值的对偶[J]. 合肥师范学院学报, 2012,30(3): 5-7.(LIANG Yan, LI Mei-rong. The duality of osculatory rational interpolation over rectangular grids[J].Journal of Hefei Normal University,2012,30(3): 5-7.(in Chinese))
    [10] SU Ben-yue, SHENG Min, TANG Shuo, ZHU Gong-qin, HU Wan-bao. SN -type multivariate blending osculatory rational interpolation[J].Journal of University of Science and Technology of China,2009,39(6): 588-593.
    [11] Berrut J P, Mittelman H D. Matrices for the direct determination of the barycentric weights of rational interpolation[J].Journal of Computational and Applied Mathematics,1997,78(2): 355-370.
    [12] 苏本跃, 盛敏. 自适应图像缩放的切触有理混合插值算法[J]. 计算机工程与应用, 2010,46(1): 196-199.(SU Ben-yue, SHENG Min. Adaptive algorithm for image interpolation based on blending osculatory rational interpolants[J].Computer Engineering and Applications,2010,46(1): 196-199.(in Chinese))
    [13] 朱晓临. (向量)有理函数插值的研究及其应用[D]. 博士学位论文. 合肥: 中国科学技术大学, 2002.(ZHU Xiao-lin. Research on (vector) rational function interpolation and its application[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2002.(in Chinese))
    [14] 檀结庆. 连分式理论及其应用[M]. 北京: 科学出版社, 2007: 214-235.(TAN Jie-qing. Continued Fraction Theory and Its Application [M]. Beijing: Science Press, 2007: 214-235.(in Chinese))
    [15] 李辰盛, 唐烁. 基于块的Lagrange-Salzer混合切触有理插值[J]. 合肥工业大学学报(自然科学版), 2008,31(7):1134-1137.(LI Chen-sheng, TANG Shuo. Block based Lagrange-Salzer blending osculatory rational interpolation[J].Journal of Hefei University of Technology (Natural Science),2008,31(7): 1134-1137.(in Chinese))
    [16] 檀结庆, 侯萌萌. 类Hermite插值的切触有理插值[J]. 合肥工业大学学报 (自然科学版), 2006,29(8): 1042-1044.(TAN Jie-qing, HOU Meng-meng. Osculatory rational Hermite-like interpolation[J].Journal of Hefei University of Technology (Natural Science),2006,29(8): 1042-1044.(in Chinese))
    [17] 唐杨新. 向量值切触有理插值存在性的判别方法[J]. 大学数学, 2011,27(2): 62-67.(TANG Yang-xin. A criterion for the existence of the vector-valued osculatory rational interpolation[J].College Mathematics,2011,27(2): 62-67.(in Chinese))
    [18] 王成伟. 矩形网格上两类二元有理插值的存在性问题[J]. 北京服装学院学报 (自然科学版), 2011,31(1): 13-19.(WANG Cheng-wei. Existence problem for two classes of bivariate rational interpolation on rectangular grids[J].Journal of Beijing Institute of Clothing Technology (Natural Science Edition),2011,31(1): 13-19.(in Chinese))
    [19] 梁艳, 唐烁. 矩形网格上Newton-Hermite-Thiele型切触有理插值[J]. 合肥工业大学学报 (自然科学版), 2007,30(7): 903-907.(LIANG Yan, TANG Shuo. Newton-Hermite-Thiele’s osculatory rational interpolation over rectangular grids[J].Journal of Hefei University of Technology (Natural Science),2007,30(7): 903-907.(in Chinese))
    [20] 顾传青. 矩阵有理逼近及其在控制论中应用[D]. 博士学位论文. 上海: 上海大学, 2004.(GU Chuan-qing. Matrix valued rational approximation and applications in control theory[D]. PhD Thesis. Shanghai: Shanghai University, 2004.(in Chinese))
    [21] 王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004: 146-178.(WANG Ren-hong, ZHU Gong-qin. Rational Function Approximation and Its Application [M]. Beijing: Science Press, 2004: 146-178.(in Chinese))
    [22] 朱功勤, 檀结庆, 王洪燕. 预给极点的向量有理插值及性质[J]. 高等学校计算数学学报, 2000,22(2): 97-104.(ZHU Gong-qin,TAN Jie-qing,WANG Hong-yan. Algorithms and properties of vector valued rational interpolants with prescribed poles[J].Numerical Mathematies: A Journal of Chinese Universities,2000,22(2): 97-104.(in Chinese))
    [23] 李昌文, 潘亚丽, 李强. 有理插值中不可达点的研究[J]. 大学数学, 2010,26(3): 50-55.(LI Chang-wen, PAN Ya-li, LI Qiang. A study of the unattainable point for rational interpolation[J].College Mathematics,2010,26(3): 50-55.(in Chinese))
    [24] 荆科, 康宁. 二元切触有理插值公式[J]. 计算机工程与应用, 2013,49(12): 33-35.(JING Ke, KANG Ning. Formula of bivariate osculatory rational interpolation[J].Computer Engineering and Applications,2013,49(12): 33-35.(in Chinese))
    [25] 马锦锦. 向量值有理插值的构造方法[J]. 九江学院学报(自然科学版), 2013(4): 59-62.(MA Jin-jin. The method of constructing vector-valued rational interpolation[J].Journal of Jiujiang University (Natural Science),2013(4): 59-62.(in Chinese))
    [26] 荆科, 康宁, 王茂华. 二元切触有理插值函数的构造方法[J]. 计算机工程与应用, 2012,48(32): 56-59.(JING Ke, KANG Ning, WANG Mao-hua. Method of constructing bivariate osculatory rational interpolation function[J].Computer Engineering and Applications,2012,48(32): 56-59.(in Chinese))
    [27] 荆科, 康宁. 矩形网格上的二元切触有理插值[J]. 应用数学和力学, 2015,36(6): 659-667.(JING Ke, KANG Ning. Bivariate osculatory rational interpolation on rectangular grids[J].Applied Mathematics and Mechanics,2015,36(6): 659-667.(in Chinese))
  • 加载中
计量
  • 文章访问数:  670
  • HTML全文浏览量:  22
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2015-12-29
  • 刊出日期:  2016-04-15

目录

    /

    返回文章
    返回