留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合Higgs方程和Maccari系统的行波解分支

王恒 王汉权 陈龙伟 郑淑花

王恒, 王汉权, 陈龙伟, 郑淑花. 耦合Higgs方程和Maccari系统的行波解分支[J]. 应用数学和力学, 2016, 37(4): 434-440. doi: 10.3879/j.issn.1000-0887.2016.04.011
引用本文: 王恒, 王汉权, 陈龙伟, 郑淑花. 耦合Higgs方程和Maccari系统的行波解分支[J]. 应用数学和力学, 2016, 37(4): 434-440. doi: 10.3879/j.issn.1000-0887.2016.04.011
WANG Heng, WANG Han-quan, CHEN Long-wei, ZHENG Shu-hua. Bifurcations of Exact Travelling Wave Solutions to Coupled Higgs Equations and Maccari Systems[J]. Applied Mathematics and Mechanics, 2016, 37(4): 434-440. doi: 10.3879/j.issn.1000-0887.2016.04.011
Citation: WANG Heng, WANG Han-quan, CHEN Long-wei, ZHENG Shu-hua. Bifurcations of Exact Travelling Wave Solutions to Coupled Higgs Equations and Maccari Systems[J]. Applied Mathematics and Mechanics, 2016, 37(4): 434-440. doi: 10.3879/j.issn.1000-0887.2016.04.011

耦合Higgs方程和Maccari系统的行波解分支

doi: 10.3879/j.issn.1000-0887.2016.04.011
基金项目: 国家自然科学基金(11261065)
详细信息
    作者简介:

    王恒(1990—),男,硕士生(E-mail: xiaoheng189@126.com);陈龙伟(1966—),男,博士(通讯作者. E-mail: 1187411801@qq.com).

  • 中图分类号: O357.41

Bifurcations of Exact Travelling Wave Solutions to Coupled Higgs Equations and Maccari Systems

Funds: The National Natural Science Foundation of China(11261065)
  • 摘要: 利用动力系统方法,对耦合Higgs方程和Maccari系统的定性行为和行波解进行了研究.基于这种方法,给出了系统在不同参数条件下的相图,得到了包括孤立波解和周期波解在内的行波解.运用数值模拟的方法,对方程的光滑孤立波解和周期波解进行了数值模拟.获得的结果完善了相关文献已有的研究成果.
  • [1] FENG Zhao-sheng, WANG Xiao-hui. The first integral method to the two-dimensional Burgers-Korteweg-de Vries equation[J]. Physics Letters A,2003,308(2/3): 173-178.
    [2] Abbasbandy S, Shirzadi A. The first integral method for modified Benjamin-Bona-Mahony equation[J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(7): 1759-1764.
    [3] Wazwaz A M. The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations[J]. Chaos, Solitons & Fractals,2008,38(5): 1505-1516.
    [4] CHEN Yong, WANG Qi. Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation[J]. Chaos, Solitons & Fractals,2005,24(3): 745-757.
    [5] 李继彬. (2+1)-维广义Benney-Luke方程的精确行波解[J]. 应用数学和力学, 2008,29(11): 1261-1267.(LI Ji-bin. Exact traveling wave solutions for the 2D-generalized Benney-Luke equation[J]. Applied Mathematics and Mechanics,2008,29(11): 1261-1267.(in Chinese))
    [6] LI Ji-bin, ZHANG Li-jun. Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation[J]. Chaos, Solitons & Fractals,2002,14(4): 581-593.
    [7] LI Ji-bin, ZHANG Yi. Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH-DP equation[J]. Nonlinear Analysis: Real World Applications,2009,10(4): 2502-2507.
    [8] LI Ji-bin, CHEN Guan-rong. Bifurcations of travelling wave solutions for four classes of nonlinear wave equations[J]. International Journal of Bifurcation and Chaos,2005,15(12): 3973-3998.
    [9] Hafez M G, Alam M N, Akbar M A. Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system[J]. Journal of King Saud University—Science,2014,27(2): 105-112.
  • 加载中
计量
  • 文章访问数:  567
  • HTML全文浏览量:  18
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 修回日期:  2015-11-11
  • 刊出日期:  2016-04-15

目录

    /

    返回文章
    返回