## 留言板

N-S方程的拟序扰动序列与改善的渐近展开匹配法

 引用本文: 李大鸣, 张红萍, 高永祥. N-S方程的拟序扰动序列与改善的渐近展开匹配法[J]. 应用数学和力学, 2002, 23(8): 855-863.
LI Da-ming, ZHANG Hong-ping, GAO Yong-xiang. Series Perturbations Approximate Solutions to N-S Equations and Modification to Asymptotic Expansion Matched Method[J]. Applied Mathematics and Mechanics, 2002, 23(8): 855-863.
 Citation: LI Da-ming, ZHANG Hong-ping, GAO Yong-xiang. Series Perturbations Approximate Solutions to N-S Equations and Modification to Asymptotic Expansion Matched Method[J]. Applied Mathematics and Mechanics, 2002, 23(8): 855-863.

## N-S方程的拟序扰动序列与改善的渐近展开匹配法

###### 作者简介:李大鸣(1957- ),男,河北人,副教授,博士.
• 中图分类号: O29;TB126

## Series Perturbations Approximate Solutions to N-S Equations and Modification to Asymptotic Expansion Matched Method

• 摘要: 提出了以拟序扰动序列逼近N-S方程定解问题渐近解的一种方法。对N-S方程及其边界条件的渐近拟序扰动序列解进行了讨论,并应用此方法对球坐标系中的圆球绕流进行求解,改善了渐近展开匹配方法,使匹配函数更容易确定。改善后的阻力曲线与实测资料相比在雷诺数小于等于4×104以前完全吻合。
•  [1] 钱伟长. 奇异摄动理论及其在力学中的应用[M].北京:科学出版社,1981,111-119. [2] 谢定裕. 渐近方法——在流体力学中的应用[M]. 北京:友谊出版公司,1983,26-43. [3] Nayfeh A H. Perturbation Methods[M]. New York: Wiley, 1973,23-31. [4] Van Dyke M. Perturbation Methods in Fluid Mechanics[M]. New York: Academic Press Inc, 1964, 9-20. [5] Kaplun S. Low Reynolds number flow past a circular cylinder[J]. J Math Mech,1957,6(3):595-603. [6] Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Trans Camb Phil Soc, 1851,9(2):8-106. [7] Oseen C W. Ueber die Stokes'sche formel, und uber eine verwandte aufgabe in der hydrodynamik[J]. Ark Math Astronom Fys,1910,6(29):154-160. [8] Chester W. On Oseen's approximation[J]. J Fluid Mech, 1962,13(3):557-569. [9] 易家训. 流体力学[M]. 章克本,张涤明,陈启强,等译. 北京:高等教育出版社,1982,262-277. [10] Whitehead A N. Second approximations to viscous fluid motion[J]. Quart J Pure Appl Math,1889,23(1):143-152. [11] Goldstein S. The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers[J]. Proc Roy Soc Ser A, 1929,123(1):225-235. [12] Kaplun S, Lagerstrom P A. Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers[J]. J Math Mech,1957,6(3):585-593. [13] Proudman I, Pearson J R A. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder[J]. J Fluid Mech, 1957,2(2):237-262. [14] Chester W,Breach D R. On the flow past a sphere at low Reynolds numbers[J]. J Fluid Mech, 1969,37(4):751-760. [15] Taneda S. Studies on wake vortices (Ⅲ): Experimental investigation of the wake behind a sphere at low Reynolds numbers[J]. Rep Res Inst Appl Mech Kyushu Univ, 1956,4(1):99-105. [16] Maxworthy T. Accurate measurements of sphere drag at low Reynolds numbers[J]. J Fluid Mech,1965,23(2):369-372.

##### 计量
• 文章访问数:  2176
• HTML全文浏览量:  34
• PDF下载量:  517
• 被引次数: 0
##### 出版历程
• 收稿日期:  2001-04-10
• 修回日期:  2002-04-01
• 刊出日期:  2002-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈