## 留言板

 引用本文: 兑关锁, 左晓宝. 主转动角与主转动轴的显式表示[J]. 应用数学和力学, 1999, 20(6): 613-618.
Dui Guansuo, Zhuo Xiaobao. The Explicit Representation to the Principal Rotation Angle and the Principal Rotation Axis[J]. Applied Mathematics and Mechanics, 1999, 20(6): 613-618.
 Citation: Dui Guansuo, Zhuo Xiaobao. The Explicit Representation to the Principal Rotation Angle and the Principal Rotation Axis[J]. Applied Mathematics and Mechanics, 1999, 20(6): 613-618.

• 中图分类号: O33

## The Explicit Representation to the Principal Rotation Angle and the Principal Rotation Axis

• 摘要: 本文利用Cayley-Hamilton定理,给出了两种直接获得转动张量显式表示的方法。一种为只含变形梯度较低次幂的表达形式,利用此表示,获得了主转动角的计算公式和主转动轴的显式表示。而另一种则是不含复杂系数且含变量个数较少的高效获得转动张量的方法。进一步,给出了主转动角和主转动轴的一些性质。
•  [1] 熊祝华,郑泉水.非线性力学场论的几个基本问题[J].力学进展,1991,21(3):310～332. [2] Hill R. Basic aspects of invariance in solid mechanics[A]. In: C S Yih ed. Advances in Applied Mechanics18[C]. New York: Academic Press,1978,1～75. [3] Ting T C. Determination of C1/2 and C－1/2 more general isotropic tensor functions of C[J]. J Elasticity,1985,15(3):319～385. [4] Hoger A, Carlson D E. Determination of the stretch and rotation in the polar decomposition of the deformation gradient[J]. Quart Appl Math,1984,42(1):113～117. [5] Sawyers K. Comments on the paper "Determination of the stretch and rotation in the polar decomposition of the deformation gradient" by A Hoger and D E Carlson[J]. Quart Appl Math,1986,44(2):309～311. [6] Xiong Zhuhua, Zheng Quanshui. General algorithms for the polar decomposition and strains[J]. Acta Mechanica Sinica,1988,4(2):175～181. [7] Rivlin R S. Further remarks on the stress-deformation relations for isotropic materials[J]. J Rational Mech Anal,1955,4(5):681～702. [8] 郑泉水,黄克智.Cauchy平均转动[J].科学通报,1988,33(22):1705～1707.

##### 计量
• 文章访问数:  1707
• HTML全文浏览量:  25
• PDF下载量:  713
• 被引次数: 0
##### 出版历程
• 收稿日期:  1997-05-20
• 修回日期:  1998-11-15
• 刊出日期:  1999-06-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈