留言板

 引用本文: 薛志群, 周海云. 值域有界的一类非线性算子不动点的带误差迭代逼近[J]. 应用数学和力学, 1999, 20(1): 93-98.
Xue Zhiqun, Zhou Haiyun. Iterative Approximation with Errors of Fixed Point for a Class of Nonlinear Operation with a Bounder Range[J]. Applied Mathematics and Mechanics, 1999, 20(1): 93-98.
 Citation: Xue Zhiqun, Zhou Haiyun. Iterative Approximation with Errors of Fixed Point for a Class of Nonlinear Operation with a Bounder Range[J]. Applied Mathematics and Mechanics, 1999, 20(1): 93-98.

值域有界的一类非线性算子不动点的带误差迭代逼近

作者简介:薛志群(1965～ ),男,硕士,讲师.
• 中图分类号: O177.91

Iterative Approximation with Errors of Fixed Point for a Class of Nonlinear Operation with a Bounder Range

• 摘要:X为一致光滑实Banach空间。T:X→X为连续强增生算子。∀fX。定义算子S:XxXSx=f-Tx+x,∀xX。设{αn}n=0与{βn}n=0为两个给定的实数列在(0,1)中且满足条件:(ⅰ)αn→0,βn→0(n→∞)。。假设{un}n=0和{vn}n=0为Xx中两个序列且满足‖un‖=o(αn),‖vn‖→0(n→∞)。∀x0∈X,迭代序列{xsn}定义为:若有界,则{xn}强收敛于S的唯一不动点。
•  [1] Browder F E.Nonlinear operators and nonlinear equations of evolntion in Banach spaces[J].Proc Sympos Pure Math,1976,18 [2] Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Leyden,The Netherlands:Noordhoff Int Publ,1976 [3] Kato T.Nonlinear semigroups and evolution equations[J].J Math Soc Japan,1967,18/19:,508～520 [4] Chidume C E.Iterative solution of nonlinear equations with strongly accretive operators[J].J Math Anal Appl,1995,(192):502～518 [5] Chidume C E.Iterative solution of nonlinear equation in smooth Banach spaces[J].Nonlinear Anal TMA,1996,26(11):1823～1834 [6] Liu L S.Ishikawa and Mann iterative process with erorrs for nonlinear strangly accretive mappings in Banach spaces[J].J Math Anal Appl,1995,(194):114～125 [7] Deimling K.Nonlinear Functional Analysis[M].New York:Berlin:Springer-Verlag,1985 [8] Deimling K.,Zeros of accretive operators[J].Manuscripta Math,1974,(13):365～374 [9] Weng X L.Fixed point iteration for local strictly pseudocontractive mapping[J].Proc Amer Math Soc,1991,(113):727～731.

计量
• 文章访问数:  2328
• HTML全文浏览量:  104
• PDF下载量:  826
• 被引次数: 0
出版历程
• 收稿日期:  1997-09-02
• 修回日期:  1998-09-11
• 刊出日期:  1999-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈