留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟不变凸集值优化的Kuhn-Tucker条件与Wolfe对偶

盛宝怀 刘三阳

盛宝怀, 刘三阳. 拟不变凸集值优化的Kuhn-Tucker条件与Wolfe对偶[J]. 应用数学和力学, 2006, 27(12): 1447-1456.
引用本文: 盛宝怀, 刘三阳. 拟不变凸集值优化的Kuhn-Tucker条件与Wolfe对偶[J]. 应用数学和力学, 2006, 27(12): 1447-1456.
SHENG Bao-huai, LIU San-yang. Kuhn-Tucker Condition and the Wolfe Duality of Preinvex Set-Valued Optimization[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1447-1456.
Citation: SHENG Bao-huai, LIU San-yang. Kuhn-Tucker Condition and the Wolfe Duality of Preinvex Set-Valued Optimization[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1447-1456.

拟不变凸集值优化的Kuhn-Tucker条件与Wolfe对偶

基金项目: 国家自然科学基金资助项目(10371024);浙江省自然科学基金资助项目(Y604003)
详细信息
    作者简介:

    盛宝怀(1962- ),男,陕西宝鸡人,教授,博士(联系人.Tel:+86-575-8342803;E-mail:bhsheng@zscas.edu.cn;shengbaohuai@hotmail.com).

  • 中图分类号: O221.6

Kuhn-Tucker Condition and the Wolfe Duality of Preinvex Set-Valued Optimization

  • 摘要: 研究了拟不变凸集值优化最优性的Kuhn-Tucker条件及Wolfe型对偶问题.首先引进了alpha-阶G-拟不变凸集和alpha-阶S-拟不变凸集值函数的概念,由此研究了alpha-阶G-拟不变凸集所对应的伴随切锥及alpha-阶伴随导数的性质;最后,借助alpha-阶伴随切导数刻画了alpha-阶S-拟不变凸集值优化最优性的Kuhn-Tucker条件和Wolfe型对偶.
  • [1] Jahn J,Rauh R.Contingent epiderivative and set-valued optimization[J].Math Methods Oper Res,1997,46(2):193—211. doi: 10.1007/BF01217690
    [2] Chen G Y,Jahn J.Optimality conditions for set-valued optimization problems[J].Math Methods Oper Res,1998,48(2):187—200. doi: 10.1007/s001860050021
    [3] Yang X Q.Directional derivatives for set-valued mappings and applications[J].Math Methods Oper Res,1998,48(2):274—285.
    [4] Jahn J,Khan A A.Generalized contingent epiderivatives in set-valued optimization: optimality conditions[J].Numberical Functional Analysis and Optimization,2002,23(7/8):807—831. doi: 10.1081/NFA-120016271
    [5] Gtz A,Jahn J.The Lagrange multiplier rule in set-valued optimization[J].SIAM J Optim,1999,10(2):331—344.
    [6] Huang Y W. Generalized constraint qualifications and optimality conditions for set-valued optimization problems[J].J Math Anal Appl,2002,265(2):309—321. doi: 10.1006/jmaa.2001.7705
    [7] 盛宝怀,刘三阳.Benson真有效意义下向量集值优化的广义Fritz John条件[J].应用数学和力学,2002,23(12):1289—1295.
    [8] SHENG Bao-huai,LIU San-yang.The optimality conditions of nonconvex set-valued vector optimization[J].Acta Mathematica Scientia B,2002,22(1):47—55.
    [9] 盛宝怀,刘三阳.Benson真有效意义下集值优化的广义最优性条件[J].数学学报,2003,46(3):611—620.
    [10] Weir T,Mond B.Preinvex functions in multiple-objective optimization[J].J Math Anal Appl,1988,136(1):29—38. doi: 10.1016/0022-247X(88)90113-8
    [11] Weir T,Jeyakumar V.A class of nonconvex functions and mathematical programming[J].Bull Austral Math Soc,1988,38(1):177—189. doi: 10.1017/S0004972700027441
    [12] Yang X M, Yang X Q,Teo K L.Characterizations and applications of prequasi-invex functions[J].J Optim Theory Appl,2001,110(3):645—668. doi: 10.1023/A:1017544513305
    [13] Mohan S R, Neogy S K. On invex sets and preinvex functions[J].J Math Anal Appl,1995,189(4):901—908. doi: 10.1006/jmaa.1995.1057
    [14] Yang X M,Li Duan.On properties of preinvex functions[J].J Math Anal Appl,2001,256(2):229—241. doi: 10.1006/jmaa.2000.7310
    [15] Yang X M,Li Duan. Semistrictly preinvex functions[J].J Math Anal Appl,2001,258(2):287—308. doi: 10.1006/jmaa.2000.7382
    [16] Luo H Z, Xu Z K. On characterizations of prequasi-invex functions[J].J Optim Theory Appl,2004,120(2):429—439. doi: 10.1023/B:JOTA.0000015930.47489.b7
    [17] Pini R.Invexity and generalized convexity[J].Optimization,1991,22(4):513—525. doi: 10.1080/02331939108843693
    [18] Craven B D. Invex functions and constrained local minima[J].Bull Austral Math Soc,1981,24(2):357—366. doi: 10.1017/S0004972700004895
    [19] Hanson M A. On sufficiency of the Kuhn-Tucker conditions[J].J Math Anal Appl,1981,80(3):545—550. doi: 10.1016/0022-247X(81)90123-2
    [20] Suneja S K, Singh C,Bector C R.Generalization of preinvex and B-vex functions[J].J Optim Theory Appl,1993,76(3):577—587. doi: 10.1007/BF00939384
    [21] Kaul R N, Kaur S. Optimality criteria in nonlinear programming involving nonconvex functions[J].J Math Anal Appl,1985,105(1):104—112. doi: 10.1016/0022-247X(85)90099-X
    [22] Qsuna-G[KG-*5]. [KG-*5]. mez R,Beato-Moreno A,Rufian-lizana A.Generalized convexity in multiobjective programming[J].J Math Anal Appl,1999,233(2):205—220. doi: 10.1006/jmaa.1999.6284
    [23] Mukherjee R N. Generalized pseudoconvex functions and multiobjective programming[J].J Math Anal Appl,1997,208(1):49—57. doi: 10.1006/jmaa.1997.5281
    [24] Bhatia D, Mehra A.Lagrangian duality for preinvex set-valued functions[J].J Math Anal Appl,1997,214(3):599—612. doi: 10.1006/jmaa.1997.5599
    [25] Yang X M, Li D,Wang S Y.Near-subconvexlikeness in vector optimization with set-valued functions[J].J Optim Theory Appl,2001,110(2):413—427. doi: 10.1023/A:1017535631418
    [26] 盛宝怀,刘三阳. 关于向量集值优化的Benson真有效性[J].应用数学,2000,13(4):95—99.
  • 加载中
计量
  • 文章访问数:  2652
  • HTML全文浏览量:  82
  • PDF下载量:  909
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-17
  • 修回日期:  2006-08-19
  • 刊出日期:  2006-12-15

目录

    /

    返回文章
    返回