留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆形杂质对裂纹扩展的影响

邢帅兵 王强胜 生月 江晓禹

邢帅兵, 王强胜, 生月, 江晓禹. 圆形杂质对裂纹扩展的影响[J]. 应用数学和力学, 2019, 40(2): 189-199. doi: 10.21656/1000-0887.390136
引用本文: 邢帅兵, 王强胜, 生月, 江晓禹. 圆形杂质对裂纹扩展的影响[J]. 应用数学和力学, 2019, 40(2): 189-199. doi: 10.21656/1000-0887.390136
XING Shuaibing, WANG Qiangsheng, SHENG Yue, JIANG Xiaoyu. Effects of Circular Inhomogeneity on Crack Propagation[J]. Applied Mathematics and Mechanics, 2019, 40(2): 189-199. doi: 10.21656/1000-0887.390136
Citation: XING Shuaibing, WANG Qiangsheng, SHENG Yue, JIANG Xiaoyu. Effects of Circular Inhomogeneity on Crack Propagation[J]. Applied Mathematics and Mechanics, 2019, 40(2): 189-199. doi: 10.21656/1000-0887.390136

圆形杂质对裂纹扩展的影响

doi: 10.21656/1000-0887.390136
基金项目: 国家自然科学基金(11472230)
详细信息
    作者简介:

    邢帅兵(1993—),男,硕士(E-mail: 15638147720@163.com);江晓禹(1965—),男,教授,博士生导师(通讯作者. E-mail: xiaoyujiang8@sina.com).

  • 中图分类号: O346

Effects of Circular Inhomogeneity on Crack Propagation

Funds: The National Natural Science Foundation of China(11472230)
  • 摘要: 在单轴拉伸载荷作用下,运用分布位错方法对无限大平面内含有一个裂纹和一个任意方向的杂质问题进行求解,得到了裂纹尖端的应力强度因子、应力场以及应变能密度.利用最小应变能密度因子准则来判断裂纹扩展方向.结果显示:软杂质对裂纹尖端应力强度因子、应变能密度和应力场有增强作用,而硬杂质则具有屏蔽作用.在 -30°<θ<30°范围内,杂质对裂纹扩展方向的影响较小,而在 -90°<θ<-30°或30°<θ<90°范围内,杂质对裂纹扩展方向的影响较大.软杂质对裂纹扩展有吸引作用,而硬杂质具有排斥作用.
  • [1] HAN J J, DHANASEKAR M. Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation[J]. International Journal of Solids & Structures,2004,41(2): 399-411.
    [2] 段士杰, 刘淑红. 剪切荷载作用下圆孔孔边裂纹的解[J]. 应用数学和力学, 2016,37(7): 740-747.(DUAN Shijie, LIU Shuhong. Solutions for a circluar hole with edge cracks under shear load[J]. Applied Mathematics and Mechanics,2016,37(7): 740-747.(in Chinese))
    [3] LI Z, CHEN Q. Crack-inclusion interaction for mode I crack analyzed by Eshelby equivalent inclusion method[J]. International Journal of Fracture,2004,118(1): 29-40.
    [4] 张明焕, 汤任基, 裂纹与弹性夹杂的相互影响[J]. 应用数学和力学, 1995,16(4): 289-300.(ZHANG Minghuan, TANG Renji. Interaction between crack and elastic inclusion[J]. Applied Mathematics and Mechanics,1995,16(4): 289-300.(in Chinese))
    [5] 杨立宏. 裂纹与任意形状夹杂相互作用的近似解法[D]. 博士学位论文. 上海: 上海交通大学, 2005.(YANG Lihong. Approximate solution of interaction between crack and inclusion of arbitrary shape[D]. PhD Thesis. Shanghai: Shanghai Jiao Tong University, 2005.(in Chinese))
    [6] MOGILEVSKAYA S G, CROUCH S L, BALLARINI R, et al. Interaction between a crack and a circular inhomogeneity with interface stiffness and tension[J]. International Journal of Fracture,2009,159: 191-207.
    [7] 周荣欣. 裂纹与夹杂之间的构型力及Ⅱ型裂纹裂尖塑性区的屏蔽效应[D]. 硕士学位论文. 上海: 上海交通大学, 2012.(ZHOU Rongxin. The configuration force between crack and inclusion & the shielding effects of plastic zone at mode II crack-tip[D]. Master Thesis. Shanghai: Shanghai Jiao Tong University, 2012.(in Chinese))
    [8] YANG R, XU P, YUE Z, et al. Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method[J]. Engineering Fracture Mechanics,2016,161: 63-75.
    [9] XIAO Z M, BAI J, MAEDA R. Electro-elastic stress analysis on piezoelectric inhomogeneity-crack interaction[J]. International Journal of Solids & Structures,2001,38(8): 1369-1394.
    [10] PENG B, LI Z, FENG M. The mode I crack-inclusion interaction in orthotropic medium[J]. Engineering Fracture Mechanics,2015,136: 185-194.
    [11] CHEN Y Z. Solution for a crack embedded in thermal dissimilar elliptic inclusion[J]. Engineering Fracture Mechanics,2016,160: 15-21.
    [12] DUNDURS J, MURA T. Interaction between an edge dislocation and a circular inclusion[J]. Journal of the Mechanics & Physics of Solids,1964,12(3): 177-189.
    [13] WANG X, SCHIAVONE P. Interaction between an edge dislocation and a circular inhomogeneity with a mixed-type imperfect interface[J]. Archive of Applied Mechanics,2017,87(1): 87-98.
    [14] WANG C C, ZHAO Y X, ZHANG Y B, et al. The interaction between an edge dislocation and a semi-infinite long crack penetrating a circular inhomogeneity[J]. Theoretical & Applied Fracture Mechanics,2015,76: 91-99.
    [15] TAO Y S, FANG Q H, ZENG X, et al. Influence of dislocation on interaction between a crack and a circular inhomogeneity[J]. International Journal of Mechanical Sciences,2014,80: 47-53.
    [16] 陈勇, 宋迎东, 高德平. 圆形夹杂前端直裂纹的应力强度因子研究[C]//中国航空学会发动机结构强度振动学术讨论会. 威海, 2002.(CHEN Yong, SONG Yingdong, GAO Deping. Study on stress intensity factor of straight crack in front end of circular inclusion[C]//Symposium on Strength Vibration Of Engine Structure of China Aeronautics Society . Weihai, 2002.(in Chinese))
    [17] TAMATE O. The effect of a circular inclusion on the stresses around a line crack in a sheet under tension[J]. International Journal of Fracture Mechanics,1968,4(3): 257-266.
    [18] ZHANG J, QU Z, HUANG Q, et al. Interaction between cracks and a circular inclusion in a finite plate with the distributed dislocation method[J]. Archive of Applied Mechanics,2013,83(6): 861-873.
    [19] ERDOGAN F, GUPTA G D, RATWANI M. Interaction between a circular inclusion and an arbitrarily oriented crack[J]. Journal of Applied Mechanics,1975,41(4): 1287-1297.
    [20] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering,1963,85(4): 519-525.
    [21] PALANISWAMY K, KNAUSS W G. Propagation of a crack under general, in-plane tension[J]. International Journal of Fracture Mechanics,1972,8(1): 114-117.
    [22] NUISMER R J. An energy release rate criterion for mixed mode fracture[J]. International Journal of Fracture,1975,11(2): 245-250.
    [23] LI C. Vector ctd criterion applied to mixed mode fatigue crack growth[J]. Fatigue & Fracture of Engineering Materials & Structures,1989,12(1): 59-65.
    [24] SIH G C. Strain-energy-density factor applied to mixed mode crack problems[J]. International Journal of Fracture,1974,10(3): 305-321.
    [25] HILLS D A, KELLY P A, DAI D N, et al. Solution of crack problems: the distributed dislocation technique[J]. Journal of Applied Mechanics,1996,65(2): 548.
    [26] ERDOGAN F, GUPTA G D, COOK T S. Numerical solution of singular integral equations[M]//Methods of Analysis and Solutions of Crack Problems . Netherlands: Springer, 1973: 368-425.
    [27] KAYA A C, ERDOGAN F. On the solution of integral equations with strongly singular kernels[J]. Quarterly of Applied Mathematics,1987,45(1): 105-122.
    [28] MIRANDA A C O, MEGGIOLARO M A, CASTRO J T P, et al. Fatigue life and crack path predictions in generic 2D structural components[J]. Engineering Fracture Mechanics,2003,70(10): 1259-1279.
    [29] CHUDNOVSKY A, CHAOUI K, MOET A. Curvilinear crack layer propagation[J]. Journal of Materials Science Letters,1987,6(9): 1033-1038.
  • 加载中
计量
  • 文章访问数:  1297
  • HTML全文浏览量:  252
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-02
  • 修回日期:  2018-05-17
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回