## 留言板

 引用本文: 郭钊, 郭子涛, 易玲艳. 多裂纹问题计算分析的本征COD边界积分方程方法[J]. 应用数学和力学, 2019, 40(2): 200-209.
GUO Zhao, GUO Zitao, YI Lingyan. Analysis of Multicrack Problems With Eigen COD Boundary Integral Equations[J]. Applied Mathematics and Mechanics, 2019, 40(2): 200-209. doi: 10.21656/1000-0887.390183
 Citation: GUO Zhao, GUO Zitao, YI Lingyan. Analysis of Multicrack Problems With Eigen COD Boundary Integral Equations[J]. Applied Mathematics and Mechanics, 2019, 40(2): 200-209.

• 中图分类号: O341

## Analysis of Multicrack Problems With Eigen COD Boundary Integral Equations

Funds: The National Natural Science Foundation of China（11662005）
• 摘要: 针对多裂纹问题，若采用常规的数值求解技术，计算效率较低.为实现多裂纹问题的大规模数值模拟，建立了本征裂纹张开位移（crack opening displacement, COD）边界积分方程及其迭代算法，并引入Eshelby矩阵的定义，将多裂纹分为近场裂纹和远场裂纹来处理裂纹间的相互影响.以采用常单元作为离散单元的快速多极边界元法为参照，对提出的计算模型和迭代算法进行了数值验证.结果表明，本征COD边界积分方程方法在处理多裂纹问题时取得较大的改进，其计算效率显著高于传统的边界元法和快速多极边界元法.
•  [1] 杜庆华, 岑章志. 边界积分方程方法: 边界元法[M]. 北京: 高等教育出版社, 1989.(DU Qinghua, CEN Zhangzhi. The Boundary Integral Equation Method: Boundary Element Method [M]. Beijing: Higher Education Press, 1989.(in Chinese)) [2] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.(YAO Zhenhan, WANG Haitao. Boundary Element Method [M]. Beijing: Higher Education Press, 2010.(in Chinese)) [3] 付云伟, 张龙, 倪新华, 等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016,48(1): 154-162.(FU Yunwei, ZHANG Long, NI Xinhua, et al. Interface cracking analysis with inclusions interaction in composite ceramic[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(1): 154-162.(in Chinese)) [4] 朱帝杰, 陈忠辉, 席婧仪, 等. 岩石平行偏置裂纹相互作用规律分析[J]. 岩土工程学报, 2017,39(2): 235-243.(ZHU Dijie, CHEN Zhonghui, XI Jingyi, et al. Interaction between offset parallel cracks in rock[J]. Chinese Journal of Geotechnical Engineering,2017,39(2): 235-243.(in Chinese)) [5] HWU C, HUANG S T, LI C C. Boundary-based finite element method for two-dimensional anisotropic elastic solids with multiple holes and cracks[J]. Engineering Analysis With Boundary Elements,2017,〖STHZ〗 79: 13-22. [6] CHEN M, XU Z, FAN X M. Evaluation of the T -stress and stress intensity factor for multi-crack problem using spline fictitious boundary element alternating method[J]. Engineering Analysis With Boundary Elements,2018,94: 69-78. [7] XU Z, SU C, GUAN Z W. Analysis of multi-crack problems by the spline fictitious boundary element method based on Erdogan fundamental solutions[J]. Acta Mechanics,2018,229(8): 3257-3278. [8] TELLES J C F, CASTOR G S, GUIMARAES S. A numerical Green’s function approach for boundary elements applied to fracture mechanics[J]. International Journal for Numerical Methods in Engineering,1995,38(19): 3259-3274. [9] TELLES J C F, GUIMARAES S. Green’s function: a numerical generation for fracture mechanics problems via boundary elements[J]. Computer Methods in Applied Mechanics and Engineering,2000,188(4): 847-858. [10] VERA-TUDELA C A R, TELLES J C F. The dual reciprocity method and the numerical Green’s function for BEM fracture mechanic problems[J]. Acta Mechanics,2016,227(11): 3205-3212. [11] BLANDFORD G E, INGRAFFEA A R, LIGGETT J A. Two-dimensional stress intensity factor computation using the boundary element method[J]. International Journal for Numerical Methods in Engineering,1981,17(3): 387-404. [12] ALIABADI M H. Boundary element formulations in fracture mechanics[J]. Applied Mechanics Reviews,1997,50(2): 83-96. [13] CHEN J T, HONG H K. Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series[J]. Applied Mechanics Reviews,1999,52(1): 17-33. [14] PORTELA A, ALIABADI M H, ROOKE D P. Dual boundary elements analysis of cracked plates: singularity subtraction technique[J]. International Journal of Fracture,1992,55(1): 17-28. [15] CHEN J T, YUEH C Y, CHANG Y L, et al. Why dual boundary element method is necessary?〖KG-*4〗[J]. Engineering Analysis With Boundary Elements,2017,76: 59-68. [16] GREENGARD L F, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics,1987,73(2): 325-348. [17] LIU Y J. Fast Multipole Boundary Element Method-Theory and Applications in Engineering [M]. London: Cambridge University Press, 2009. [18] GUO Z, LIU Y J, MA H, et al. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements[J]. Engineering Analysis With Boundary Elements,2014,47: 1-9. [19] GUO Z, MA H. Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation[J]. Journal of Shanghai University (English Edition),2011,15(3): 173-179. [20] GUO Z, MA H. Stress intensity factors of periodic crack arrays with eigen COD formulation of boundary integral equation[C]//The 3rd International Conference on Heterogeneous Material Mechanics (ICHMM).Shanghai, 2011. [21] MA H, GUO Z, MANICKA D, et al. Efficient solution of multiple cracks in great number using eigen COD boundary integral equations with iteration procedure[J]. Engineering Analysis With Boundary Elements,2013,37(3): 487-500.

##### 计量
• 文章访问数:  1548
• HTML全文浏览量:  340
• PDF下载量:  506
• 被引次数: 0
##### 出版历程
• 收稿日期:  2018-06-27
• 修回日期:  2018-10-16
• 刊出日期:  2019-02-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈