留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非Newton流体的物质点法模拟研究

周晓敏 孙政

周晓敏, 孙政. 非Newton流体的物质点法模拟研究[J]. 应用数学和力学, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349
引用本文: 周晓敏, 孙政. 非Newton流体的物质点法模拟研究[J]. 应用数学和力学, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349
ZHOU Xiaomin, SUN Zheng. Simulation of Non-Newtonian Fluid Flows With the Material Point Method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349
Citation: ZHOU Xiaomin, SUN Zheng. Simulation of Non-Newtonian Fluid Flows With the Material Point Method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349

非Newton流体的物质点法模拟研究

doi: 10.21656/1000-0887.390349
基金项目: 国家自然科学基金项目(11902127);江西省自然科学基金项目(20192BAB212010) ;江西省教育厅科学技术研究项目(GJJ170565;GJJ180499)
详细信息
    作者简介:

    周晓敏(1988—),女,讲师,硕士(E-mail: xmzhou@jxust.edu.cn);孙政(1986—),男,讲师,博士(通讯作者. E-mail: sunzheng@jxust.edu.cn).

  • 中图分类号: O373

Simulation of Non-Newtonian Fluid Flows With the Material Point Method

Funds: The National Natural Science Foundation of China(11902127)
  • 摘要: 准确模拟非Newton流体的运动特性具有重要的工程意义.物质点法作为一种相对新兴的粒子型算法,其结合了Lagrange算法和Euler算法的双重优势,已广泛有效地应用于各个工程领域.基于物质点法,结合人工状态方程,分析了两种非Newton流体(cross流体和幂律流体)在平板Poiseuille流和Couette流情况下的流动特性.结果表明:对Newton流体,物质点模拟结果与理论值一致;对非Newton流体,物质点法可准确模拟其剪切稀化和剪切稠化现象.表明了物质点法在模拟非Newton流体流动问题时的适用性,拓展了物质点法的应用范围.
  • [1] CROCHET M J, DAVIES A R, WALTERS K. Numerical Simulation of Non-Newtonian Flow [M]. Amsterdam: Elsevier, 2012.
    [2] BAAIJENS F P T, HULSEN M A, ANDERSON P D. The use of mixed finite element methods for viscoelastic fluid flow analysis[M]// Encyclopedia of Computational Mechanics.John Wiley & Sons, 2018: 481-498.
    [3] 张茂林, 吴清松, 李传亮, 等. 非牛顿流体的差分方法研究[J]. 西南石油学院学报, 2000,22(1): 5-8.(ZHANG Maolin, WU Qingsong, LI Chuanliang, et al. Research on the formulation of finite difference methods for non Newtonian fluids in porous media[J]. Journal of Southwest Petroleum Institute,2000,22(1): 5-8.(in Chinese))
    [4] 袁世伟, 赖焕新. 幂律非牛顿流体流动的有限体积算法[J]. 华东理工大学学报(自然科学版), 2013,39(3): 364-369. (YUAN Shiwei, LAI Huanxin. A finite volume method for calculating flows of power-law non-Newton fluids[J]. Journal of East China University of Science and Technology(Natural Science Edition),2013,39(3): 364-369.(in Chinese))
    [5] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
    [6] LIU G, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method [M]. World Scientific Publishing Company, 2003.
    [7] 徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019,40(1): 20-35.(XU Chengjun, XU Shengli, LIU Qingyuan. Modified particle approximation to pressure gradients in the SPH algorithm for interfacial flows with high density ratios[J]. Applied Mathematics and Mechanics,2019,40(1): 20-35.(in Chinese))
    [8] ZHOU G, GE W, LI J. Smoothed particles as a non-Newtonian fluid: a case study in Couette flow[J]. Chemical Engineering Science,2010,65(6): 2258-2262.
    [9] FAN X, TANNER R I, ZHENG R. Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow[J]. Journal of Non-Newtonian Fluid Mechanics,2010,165(5/6): 219-226.
    [10] SHAMSODDINI R, SEFID M, FATEHI R. Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer[J]. Journal of Mechanical Science and Technology,2016,30(1): 307-316.
    [11] CHAUSSONNET G, KOCH R, BAUER H, et al. Smoothed particle hydrodynamics simulation of an air-assisted atomizer operating at high pressure: influence of non-Newtonian effects[J]. Journal of Fluids Engineering,2018,140(6): 61301. DOI: 10.1115/1.4038753.
    [12] SULSKY D, CHEN Z, SCHREYER H. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering,1994,118(1): 179-196.
    [13] SULSKY D, ZHOU S, SCHREYER H. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications,1995,87(1): 236-252.
    [14] 廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013,43(2): 237-264.(LIAN Yanping, ZHANG Fan, LIU Yan, et al. Material point method and its applications[J]. Advances in Mechanics,2013,43(2): 237-264. (in Chinese))
    [15] 王宇新, 李晓杰, 王小红, 等. 炸药爆轰物质点法三维数值模拟[J]. 应用数学和力学, 2015,36(2): 198-206.(WANG Yuxin, LI Xiaojie, WANG Xiaohong, et al. 3D simulation of explosive detonation with the material point method[J]. Applied Mathematics and Mechanics,2015,36(2): 198-206. (in Chinese))
    [16] MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering,2009,36(2): 272-282.
    [17] 张雄, 刘岩, 张帆, 等. 极端变形问题的物质点法研究进展[J]. 计算力学学报, 2017,34(1): 1-16.(ZHANG Xiong, LIU Yan, ZHANG Fan, et al. Recent progress of material point method for extreme deformation problems[J]. Chinese Journal of Computational Mechanics,2017,34(1): 1-16.(in Chinese))
    [18] SUN Z, LI H, GAN Y, et al. Material point method and smoothed particle hydrodynamics simulations of fluid flow problems: a comparative study[J]. Progress in Computational Fluid Dynamics,2018,18(1): 1-18.
    [19] 陈文芳, 蔡扶时. 非牛顿流体的一些本构方程[J]. 力学学报, 1983,19(1): 16-26.(CHEN Wenfang, CAI Fushi. Some constitutive equations for non-Newtonian fluids[J]. Chinese Journal of Theoretical and Applied Mechanics,1983,19(1): 16-26.(in Chinese))
    [20] 陈文芳. 非牛顿流体力学[M]. 北京: 科学出版社, 1984.(CHEN Wenfang. The Mechanics of Non-Newtonian Fluids [M]. Beijing: Science Press, 1984.(in Chinese))
    [21] 周光坰, 严宗毅, 许世雄, 等. 流体力学(上)[M]. 北京: 高等教育出版社, 2001.(ZHOU Guangjiong, YAN Zongyi, XU Shixiong, et al. The Fluid Mechanics [M]. Beijing: Higher Education Press, 2001.(in Chinese))
    [22] LI J G, HAMAMOTO Y, LIU Y, et al. Sloshing impact simulation with material point method and its experimental validations[J]. Computers & Fluids,2014,103: 86-99.
    [23] MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics,1997,136(1): 214-226.
    [24] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics,1994,110(2): 399-406.
    [25] XIANG H, CHEN B. Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel[J]. Fluid Dynamics Research,2015,47(1): 15511. DOI: 10.1088/0169-5983/47/1/015511.
  • 加载中
计量
  • 文章访问数:  640
  • HTML全文浏览量:  35
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-01-14
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回