留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解时间分布阶扩散方程的两个高阶有限差分格式

胡嘉卉 王俊刚 聂玉峰

胡嘉卉, 王俊刚, 聂玉峰. 求解时间分布阶扩散方程的两个高阶有限差分格式[J]. 应用数学和力学, 2019, 40(7): 791-800. doi: 10.21656/1000-0887.390358
引用本文: 胡嘉卉, 王俊刚, 聂玉峰. 求解时间分布阶扩散方程的两个高阶有限差分格式[J]. 应用数学和力学, 2019, 40(7): 791-800. doi: 10.21656/1000-0887.390358
HU Jiahui, WANG Jungang, NIE Yufeng. Two High-Order Difference Schemes for Solving Time Distributed-Order Diffusion Equations[J]. Applied Mathematics and Mechanics, 2019, 40(7): 791-800. doi: 10.21656/1000-0887.390358
Citation: HU Jiahui, WANG Jungang, NIE Yufeng. Two High-Order Difference Schemes for Solving Time Distributed-Order Diffusion Equations[J]. Applied Mathematics and Mechanics, 2019, 40(7): 791-800. doi: 10.21656/1000-0887.390358

求解时间分布阶扩散方程的两个高阶有限差分格式

doi: 10.21656/1000-0887.390358
基金项目: 国家自然科学基金(11471262)
详细信息
    作者简介:

    胡嘉卉(1980—),女,博士生(E-mail: hujh@mail.nwpu.edu.cn);聂玉峰(1968—),男,教授,博士生导师(通讯作者. E-mail: yfnie@nwpu.edu.cn).

  • 中图分类号: O242.2

Two High-Order Difference Schemes for Solving Time Distributed-Order Diffusion Equations

Funds: The National Natural Science Foundation of China(11471262)
  • 摘要: 基于复化Simpson公式和复化两点Gauss-Legendre公式,构造了两个求解时间分布阶扩散方程的高阶有限差分格式.不同于以往文献中提出的时间一阶或二阶格式,这两种格式在时间方向都具有三阶精度,而在分布阶和空间方向可达到四阶精度.数值结果表明,两种算法都是稳定且收敛的,从而是有效的.两种格式的收敛速率也通过数值实验进行了验证,并且通过和文献中的算法对比可以得出其更为高效,
  • [1] PODLUBNY I. Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications [M]. San Diego: Academic Press, 1999.
    [2] 张平奎, 杨绪君. 基于激励滑模控制的分数阶神经网络的修正投影同步研究[J]. 应用数学和力学, 2018,39(3): 343-354.(ZHANG Pingkui, YANG Xujun. Modified projective synchronization of a class of fractional-order neural networks based on active sliding mode control[J]. Applied Mathematics and Mechanics,2018,39(3): 343-354.(in Chinese))
    [3] 杨旭, 梁英杰, 孙洪广, 等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018,39(11): 1213-1226.(YANG Xu, LIANG Yingjie, SUN Hongguang, et al. A study on the constitutive relation and the flow of spatial fractional non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics,2018,39(11): 1213-1226.(in Chinese))
    [4] CAPUTO M. Elasticità e Dissipazione [M]. Bologna: Zanichelli, 1969.
    [5] SINAI Y G. The limiting behavior of a one-dimensional random walk in a random medium[J]. Theory of Probability & Its Applications,1983,27(2): 256-268.
    [6] CHECHKIN A V, KLAFTER J, SOKOLOV I M. Fractional Fokker-Planck equation for ultraslow kinetics[J]. Europhysics Letters,2003,63(3): 326-332.
    [7] KOCHUBEI A N. Distributed order calculus and equations of ultraslow diffusion[J]. Journal of Mathematical Analysis and Applications,2008,340(1): 252-281.
    [8] JIAO Z, CHEN Y,PODLUBNY I. Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives [M]. London: Springer, 2012.
    [9] CAPUTO M. Distributed order differential equations modelling dielectric induction and diffusion[J]. Fractional Calculus and Applied Analysis,2001,4(4): 421-442.
    [10] HARTLEY T T, LORENZO C F. Fractional system identification: an approach using continuous order-distributions: NASA/TM-1999-209640[R]. USA: NASA, 1999.
    [11] FORD N J, MORGADO M L, REBELO M. An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time[J]. Electronic Transactions on Numerical Analysis,2015,44: 289-305.
    [12] GAO G H, SUN Z Z. Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations[J]. Numerical Methods for Partial Differential Equations,2016,32(2): 591-615.
    [13] GAO G H, SUN H W, SUN Z Z. Some high-order difference schemes for the distributed-order differential equations[J]. Journal of Computational Physics, 2015,298: 337-359.
    [14] HU J H, WANG J G, NIE Y F. Numerical algorithms for multidimensional time-fractional wave equation of distributed-order with a nonlinear source term[J]. Advances in Difference Equations,2018(1): 352. DOI: 10.1186/s13662-018-1817-2.
    [15] 郭晓斌, 尚德泉. 复化两点Gauss-Legendre公式及其误差分析[J]. 数学教学研究, 2010,29(4): 49-51.(GUO Xiaobin, SHANG Dequan. Composite two-point Gauss-Legendre formula and the error analysis[J]. Research of Mathematic Teaching-Learning,2010,29(4): 49-51.(in Chinese))
    [16] TIAN W, ZHOU H, DENG W. A class of second order difference approximations for solving space fractional diffusion equations[J]. Mathematics of Computation,2015,84(294): 1703-1727.
    [17] SUN Z Z. The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations [M]. Beijing: Science Press, 2009.
    [18] ZHU Y, SUN Z Z. A high-order difference scheme for the space and time fractional Bloch-Torrey equation[J].Computational Methods in Applied Mathematics,2018,18(1): 147-164.
  • 加载中
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  158
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-03-09
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回