留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于曲梁弹性理论的弯曲覆岩变形及应力分析

卜万奎 徐慧 赵玉成

卜万奎, 徐慧, 赵玉成. 基于曲梁弹性理论的弯曲覆岩变形及应力分析[J]. 应用数学和力学, 2020, 41(3): 302-318. doi: 10.21656/1000-0887.400081
引用本文: 卜万奎, 徐慧, 赵玉成. 基于曲梁弹性理论的弯曲覆岩变形及应力分析[J]. 应用数学和力学, 2020, 41(3): 302-318. doi: 10.21656/1000-0887.400081
BU Wankui, XU Hui, ZHAO Yucheng. Analysis on Deformation and Stress of Bending Stratum Based on the Elastic Theory for Curved Beams[J]. Applied Mathematics and Mechanics, 2020, 41(3): 302-318. doi: 10.21656/1000-0887.400081
Citation: BU Wankui, XU Hui, ZHAO Yucheng. Analysis on Deformation and Stress of Bending Stratum Based on the Elastic Theory for Curved Beams[J]. Applied Mathematics and Mechanics, 2020, 41(3): 302-318. doi: 10.21656/1000-0887.400081

基于曲梁弹性理论的弯曲覆岩变形及应力分析

doi: 10.21656/1000-0887.400081
基金项目: 国家自然科学基金(面上项目)(51574228);山东省高等学校科研发展计划一般项目(J17KB044)
详细信息
    作者简介:

    卜万奎(1980—),男,教授,博士(通讯作者. E-mail: bwk239@126.com).

  • 中图分类号: O343

Analysis on Deformation and Stress of Bending Stratum Based on the Elastic Theory for Curved Beams

Funds: The National Natural Science Foundation of China(General Program)(51574228)
  • 摘要: 引入适用于极坐标下曲梁的位移函数,通过理论分析得出用位移函数表示的曲梁控制方程和位移分量、应力分量.在此基础上,采用差分原理给出曲梁控制方程、位移分量和应力分量的差分代数方程.最后,采用数值计算方法,分析了煤层开采后弯曲覆岩的位移和应力分布特征,结果表明:1) 煤层开采后弯曲覆岩产生下沉变形;弯曲岩层环向位移既有拉伸也有压缩.2) 离开切眼不远处径向应力将达到峰值,径向应力由内边界向外逐渐增大;工作面后方不远处环向应力将达到峰值,环向应力较容易引起压缩破断;离开切眼不远处剪应力将达到峰值,对于小角度截面上的剪应力由内边界向外逐渐增大.研究结果为煤矿工程提供了科学依据与参考.
  • [1] 虎维岳, 何满潮. 深部煤炭资源及开发地质条件研究现状与发展趋势[M]. 北京: 煤炭工业出版社, 2008.(HU Weiyue, HE Manchao. The Present Situation and Development Trend for Deep Coal Resources and the Development of Geological Conditions [M]. Beijing: Coal Industry Publishing House, 2008.(in Chinese))
    [2] 何满朝, 钱七虎. 深部岩体力学基础[M]. 北京: 科学出版社, 2010.(HE Manchao, QIAN Qihu. Mechanical Foundation for Deep Rock Mass [M]. Beijing: Science Press, 2010.(in Chinese))
    [3] ODEN J T, RIPPERGER E A. Mechanics of Elastic Structures [M]. 2nd ed. New York: McGraw-Hill Book Company, 1981.
    [4] TIMOSHENKO S P, GOODIER J N. Theory of Elasticity [M]. New York: McGraw-Hill Book Company, 1979.
    [5] CHIANESE R B, ERDLAC R J. The general solution to the distribution of stresses in a circular ring compressed by two forces acting along a diameter[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1988,41(2): 239-247.
    [6] BAGCI C. A new unified strength of materials solution for stresses in curved beams and rings[J]. Journal of Mechanical Design,1992,114(2): 231-237.
    [7] BAGCI C. Exact elasticity solutions for stresses and deflections in curved beams and rings of exponential and T-sections[J]. Journal of Mechanical Design,1993,115(3): 346-358.
    [8] COOK R D. Circumferential stress in curved beams[J]. Journal of Aplied Mechanics,1992,59(1): 224-225.
    [9] TUTUNCU N. Plane stress analysis of end-loaded orthotropic curved beams of constant thickness with applications to full rings[J]. Journal of Mechanical Design,1998,120(2): 368-374.
    [10] SLOBODA A, HONARMANDI P. Generalized elasticity method for curved beam stress analysis: analytical and numerical comparison for a lifting hook[J]. Mechanics Based Design of Structures and Machines,2007,35(3): 319-332.
    [11] 钟万勰, 徐新生, 张洪武. 弹性曲梁问题的直接法[J]. 工程力学, 1996,13(4): 1-8.(ZHONG Wanxie, XU Xinsheng, ZHANG Hongwu. On a direct method for the problem of elastic curved beams[J]. Engineering Mechanics,1996,13(4): 1-8.(in Chinese))
    [12] 李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018,〖STHZ〗 39(8): 875-891.(LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J]. Applied Mathematics and Mechanics,2018,39(8): 875-891.(in Chinese))
    [13] 侯永康, 段树金, 安蕊梅. 满足断裂过程区裂纹张开位移条件应力函数的半解析解法[J]. 应用数学和力学, 2018,39(8): 979-988.(HOU Yongkang, DUAN Shujin, AN Ruimei. A semi-analytical method for stress functions meeting crack opening displacements in fracture process zones[J]. Applied Mathematics and Mechanics,2018,39(8): 979-988.(in Chinese))
    [14] DURELLI A J, RANGANAYAKAMMA B. Parametric solution of stresses in beams[J]. Journal of Engineering Mechanics,1989,115(2): 401-415.
    [15] AHMED S R, IDRIS A B M, UDDIN M W. Numerical solution of both ends fixed deep beams[J]. Computers & Structures,1996,61(1): 21-29.
    [16] AHMED S R, KHAN M R, ISLAM K M S, et al. Investigation of stresses at the fixed end of deep cantilever beams[J]. Computers & Structures,1998,69(3): 329-338.
    [17] 姚晓东, 张元海. 基于抽象翘曲位移函数的箱形梁剪力滞效应分析[J]. 应用数学和力学, 2018,39(12): 1351-1363.(YAO Xiaodong, ZHANG Yuanhai. Analysis of shear lag effects in box girders based on abstract warping displacement functions[J]. Applied Mathematics and Mechanics,2018,39(12): 1351-1363.(in Chinese))
    [18] COOK R D. Axisymmetric finite element analysis for pure moment loading of curved beams and pipe bends[J]. Computers & Structures,1989,33(2): 483-487.
    [19] RATTANAWANGCHAROEN N, BAI H, SHAH A H. A 3D cylindrical finite element model for thick curved beam stress analysis[J]. International Journal for Numerical Methods in Engineering,2004,59(4): 511-531.
    [20] RICHARDS T H, DANIELS M J. Enhancing finite element surface stress predictions: a semi-analytic technique for axisymmetric solids[J]. The Journal of Strain Analysis for Engineering Design,1987,22(2): 75-86.
    [21] SMART J. On the determination of boundary stresses in finite elements[J]. The Journal of Strain Analysis for Engineering Design,1987,〖STHZ〗 22(2): 87-96.
    [22] GANGAN P. The curved beam/deep arch/finite ring element revisited[J]. International Journal for Numerical Methods in Engineering,1985,21(3): 389-407.
    [23] DOW J O, JONES M S, HARWOOD S A. A new approach to boundary modeling for finite difference applications in solid mechanics[J]. International Journal for Numerical Methods in Engineering,1990,30(1): 99-113.
    [24] RANZI G, GARA F, LEONI G, et al. Analysis of composite beams with partial shear interaction using available modelling techniques: a comparative study[J]. Computers & Structures,2006,84(13/14): 930-941.
    [25] AHMED S R, NATH S K D, UDDIN M W. Optimum shapes of tire-treads for avoiding lateral slippage between tires and roads[J]. International Journal for Numerical Methods in Engineering,2005,64(6): 729-750.
    [26] AHMED S R, HOSSAIN M Z, UDDIN M W. A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials[J]. Computers & Structures,2005,83(1): 35-51.
    [27] HOSSAIN M Z, AHMED S R, UDDIN M W. Generalized mathematical model for the solution of mixed-boundary-value elastic problems[J]. Applied Mathematics and Computation,2005,169(2): 1247-1275.
    [28] XU W, LI G. Finite difference three-dimensional solution of stresses in adhesively bonded composite tubular joint subjected to torsion[J]. International Journal of Adhesion and Adhesives,2010,30(4): 191-199.
    [29] NATH S K D, AHMED S R. A displacement potential-based numerical solution for orthotropic composite panels under end moment and shear loading[J]. Journal of Mechanics of Materials and Structures,2009,4(6): 987-1004.
    [30] MCCORQUODALE P, COLELLA P, GROTE D P, et al. A node-centered local refinement algorithm for Poisson’s equation in complex geometries[J]. Journal of Computational Physics,2004,201(1): 34-60.
    [31] DING H, SHU C. A stencil adaptive algorithm for finite difference solution of incompressible viscous flows[J]. Journal of Computational Physics,2006,214(1): 397-420.
    [32] MIN C, GIBOU F, CENICEROS H D. A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids[J]. Journal of Computational Physics,2006,218(1): 123-140.
    [33] BIENIASZ L K. Experiments with a local adaptive grid h -refinement for the finite-difference solution of BVPs in singularly perturbed second-order ODEs[J]. Applied Mathematics and Computation,2008,195(1): 196-219.
  • 加载中
计量
  • 文章访问数:  543
  • HTML全文浏览量:  48
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-04-02
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回