留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带状区域中渐近周期曲率流方程的整体解

刘茜 陈瑞琪

刘茜, 陈瑞琪. 带状区域中渐近周期曲率流方程的整体解[J]. 应用数学和力学, 2021, 42(2): 180-187. doi: 10.21656/1000-0887.410087
引用本文: 刘茜, 陈瑞琪. 带状区域中渐近周期曲率流方程的整体解[J]. 应用数学和力学, 2021, 42(2): 180-187. doi: 10.21656/1000-0887.410087
LIU Qian, CHEN Ruiqi. Global Solutions of the Asymptotically Periodic Curvature Flow Equations in Band Domains[J]. Applied Mathematics and Mechanics, 2021, 42(2): 180-187. doi: 10.21656/1000-0887.410087
Citation: LIU Qian, CHEN Ruiqi. Global Solutions of the Asymptotically Periodic Curvature Flow Equations in Band Domains[J]. Applied Mathematics and Mechanics, 2021, 42(2): 180-187. doi: 10.21656/1000-0887.410087

带状区域中渐近周期曲率流方程的整体解

doi: 10.21656/1000-0887.410087
基金项目: 国家自然科学基金(11671262);教育部“十三五”教育科研规划重点课题子课题(JKY2540)
详细信息
    作者简介:

    刘茜(1982—),女,讲师,硕士(通讯作者. E-mail: 717998089@qq.com).

  • 中图分类号: O175.26

Global Solutions of the Asymptotically Periodic Curvature Flow Equations in Band Domains

Funds: The National Natural Science Foundation of China(11671262)
  • 摘要: 该文研究了具有渐近周期系数的曲率流方程的Neumann边值问题.首先,考虑一列初值问题及其相应的全局解,通过一致的先验估计取一个收敛子列,得到其极限就是一个整体解的结论.其次,向负无穷时间方向进行重整化,使用强极值原理证明了整体解的唯一性.最后,为了研究整体解的ω-和α-极限,再次使用重整化方法,通过构造拉回函数、进行一致的先验估计以及Cantor对角化方法取收敛子列,得到整体解的ω-和α-极限都是极限问题的整体解,即它们都是周期行波的结论.
  • [1] GAGE M, HAMILTON R S. The heat equation shrinking convex plane curves[J]. Journal of Differential Geometry,1986,23: 69-96.
    [2] GRAYSON M. The heat equation shrinks embedded plane curves to round points[J]. Journal of Differential Geometry,1987,26: 285-314.
    [3] CHOU K S, ZHU X P. The Curve Shortening Problem [M]. New York: Chapman & Hall, CRC, 2001.
    [4] CHOU K S, ZHU X P. On the existence of two convex hypersurfaces with prescribed kth mean curvature[C]// Partial Differential Equations of Elliptic Type. Cortona, 1992.
    [5] ALTSCHULER S J, WU L F. Convergence to translating solutions for a class of quasilinear parabolic boundary problems [J]. Mathematische Annalen,1993,295: 761-765.
    [6] SMOLUCHOWSKI R. Theory of grain boundary motion[J]. Physical Review,1951,83(1): 69-70.
    [7] TURNBULL D. Theory of grain boundary migration rates[J]. The Journal of the Minerals, Metals & Materials Society,1951,3(8): 661-665.
    [8] MULLINS W W. Two-dimensional motion of idealized grain boundaries[J]. Journal of Applied Physics,1956,27(8): 900-904.
    [9] NAKAMURA K I, MATANO H, HILHORST D, et al. Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term[J]. Journal of Statistical Physics,1999,95(5/6): 1165-1185.
    [10] CAI J J, LOU B D. Convergence in a quasilinear parabolic equation with Neumann boundary conditions[J]. Nonlinear Analysis: Theory, Methods & Applications,2011,74(4): 1426-1435.
    [11] YUAN L X, LOU B D. Entire solutions of a curvature flow in an undulating cylinder[J]. Bulletin of the Australian Mathematical Society,2019,99: 1-11.
    [12] 薛雪. 具有全局交互作用的时滞周期格微分系统的 front-like 整体解[J]. 应用数学和力学, 2020,41(2): 223-234.(XUE Xue. Front-like entire solutions to lattice periodic dynamic systems with delays and global interaction[J]. Applied Mathematics and Mechanics,2020,41(2): 223-234.(in Chinese))
    [13] 叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 北京: 科学出版社, 2011.(YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to Reaction-Diffusion Equation [M]. Beijing: Science Press, 2011.(in Chinese))
    [14] 曹华荣, 吴事良. 一维格上时滞微分系统的行波解[J]. 应用数学和力学, 2018,39(5): 592-610.(CAO Huarong, WU Shiliang. Traveling waves of a delayed differential system in a lattice[J]. Applied Mathematics and Mechanics,2018,39(5): 592-610.(in Chinese))
    [15] 张秋, 陈广生. 一类具有非线性发生率与时滞的非局部扩散 SIR 模型的临界波的存在性[J]. 应用数学和力学, 2019,40(7): 713-727.(ZHANG Qiu, CHEN Guangsheng. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2019,40(7): 713-727.(in Chinese))
    [16] LOU Bendong. Periodic traveling waves of a mean curvature flow in heterogeneous media[J]. Discrete and Continuous Dynamical Systems: A,2009,25(1): 231-249.
    [17] FRIEDMAN A. Parabolic Differential Equations of Parabolic Type [M]. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1964.
  • 加载中
计量
  • 文章访问数:  1366
  • HTML全文浏览量:  303
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-07-31
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回