留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡间距对受污染球形气泡界面性质和尾流的影响

孙涛 庞明军 费洋

孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099
引用本文: 孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099
SUN Tao, PANG Mingjun, FEI Yang. Effects of Bubble Spacings on Interface Properties and Wake Flow for 2 Contaminated Spherical Bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099
Citation: SUN Tao, PANG Mingjun, FEI Yang. Effects of Bubble Spacings on Interface Properties and Wake Flow for 2 Contaminated Spherical Bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099

气泡间距对受污染球形气泡界面性质和尾流的影响

doi: 10.21656/1000-0887.410099
基金项目: 国家自然科学基金(51376026);江苏省高校“青蓝工程”项目资助
详细信息
    作者简介:

    孙涛(1996—),男,硕士生;庞明军(1976—),男,副教授,博士(通讯作者. E-mail: pangmj@cczu.edu.cn).

  • 中图分类号: O357.1|O359.1

Effects of Bubble Spacings on Interface Properties and Wake Flow for 2 Contaminated Spherical Bubbles

Funds: The National Natural Science Foundation of China(51376026)
  • 摘要: 为了理解气泡间相互作用对受污染气泡水动力学特性的影响,基于改进的停滞帽模型,以表面活性剂作为污染介质,详细研究了不同气泡间距下气泡的界面参数、周围流场和尾涡特性.通过求解气泡界面与流域间的吸附和解析方程,考虑局部流动以及Marangoni效应的影响,形成稳定的污染界面.借助Langmuir方程将界面切应力与界面表面活性剂浓度相关联,实现气泡界面切应力的求解.研究发现,改变两气泡的间距,不会显著影响气泡1的界面参数,而对气泡2的界面参数影响巨大.气泡1尾涡向气泡2上游界面的逼近是气泡2界面参数改变的主要原因,该尾涡对气泡2界面上表面活性剂分布的影响与对流作用相反,其可以把流向气泡2尾部的表面活性剂拖回气泡上游界面,从而影响气泡2的界面参数分布,并出现了低影响与高影响阶段.而且气泡1的尾涡长度和涡中心垂直位置的值受气泡2上游界面浓度和气泡间距的共同影响,气泡2各尾涡参数值随上游界面浓度的增加而减小直至为零.
  • [1] TAKAGI S, MATSUMOTO Y. Surfactant effects on bubble motion and bubbly flows[J]. Annual Review of Fluid Mechanics,2011,43(1): 615-636.
    [2] PALAPARTHI R, PAPAGEORGIOU D T, MALDARELLI C. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles[J]. Journal of Fluid Mechanics,2006,559: 1-44.
    [3] CUENOT B, MAGNAUDET J, SPENNATO B. The effects of slightly soluble surfactants on the flow around a spherical bubble[J]. Journal of Fluid Mechanics,1997,339: 25-53.
    [4] JAREK E, WARSZYNSKI P, KRZAN M. Influence of different electrolytes on bubble motion in ionic surfactants solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,505: 171-178.
    [5] SABONI A, ALEXANDROVA S, KARSHEVA M. Effects of interface contamination on mass transfer into a spherical bubble[J]. Journal of Chemical Technology & Metallurg y, 2015,50(5): 589-596.
    [6] KISHORE N, NALAJALA V S, CHHABRA R P. Effects of contamination and shear-thinning fluid viscosity on drag behavior of spherical bubbles[J]. Industrial & Engineering Chemistry Research,2013,52(17): 6049-6056.
    [7] NALAJALA V S, KISHORE N. Drag of contaminated bubbles in power-law fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,443: 240-248.
    [8] NALAJALA V S, KISHORE N. Motion of partially contaminated bubbles in power-law liquids: effect of wall retardation[J]. International Journal of Mineral Processing,2015,140: 8-18.
    [9] PESCI C, WEINER A, MARSCHALL H, et al. Computational analysis of single rising bubbles influenced by soluble surfactant[J]. Journal of Fluid Mechanics,2018,856: 709-763.
    [10] FEI Y, PANG M J. A treatment for contaminated interfaces and its application to study the hydrodynamics of a spherical bubble contaminated by surfactants[J]. Chemical Engineering Science,2019,200: 87-102.
    [11] HOSOKAWA S, MASUKURA Y, HAYASHI K, et al. Experimental evaluation of Marangoni stress and surfactant concentration at interface of contaminated single spherical drop using spatiotemporal filter velocimetry[J]. International Journal of Multiphase Flow,2017,97: 157-167.
    [12] HOSOKAWA S, HAYASHI K, TOMIYAMA A. Evaluation of adsorption of surfactant at a moving interface of a single spherical drop[J]. Experimental Thermal and Fluid Science,2018,96: 397-405.
    [13] CLIFT R, GRACE J R, WEBER M E. Bubbles, Drops, and Particles [M]. New York: Academic Press, 1978.
    [14] SABONI A, ALEXANDROVA S, MORY M. Flow around a contaminated fluid sphere[J]. International Journal of Multiphase Flow,2010,〖STHZ〗 36(6): 503-512.
    [15] DANI A, COCKX A, GUIRAUD P. Direct numerical simulation of mass transfer from spherical bubbles: the effect of interface contamination at low Reynolds numbers[J]. International Journal of Chemical Reactor Engineering,2006,4. DOI: 10.2202/1542-6580.1304.
    [16] 庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响[J]. 应用数学和力学, 2020,41(2): 143-155. (PANG Mingjun, NIU Ruipeng, LU Minjie. Wall effects on floating characteristics of bubbles in shear-thining fluids[J]. Applied Mathematics and Mechanics,2020,41(2): 143-155. (in Chinese))
    [17] DUKHIN S S, LOTFI M, KOVALCHUK V I, et al. Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspect s, 2016,492: 127-137.
    [18] 李少白, 徐双, 范俊赓, 等. 非牛顿流体中在线双气泡相互作用的数值模拟[J]. 沈阳航空航天大学学报, 2017,34(4): 63-68. (LI Shaobai, XU Shuang, FAN Jungeng, et al. Numerical simulation of interaction between in-line two bubbles in non-Newtonian fluids[J]. Journal of Shenyang Aerospace University,2017,34(4): 63-68. (in Chinese))
    [19] 孟辉, 张兴伟, 牛小东, 等. 格子Boltzmann方法分析气泡的运动及其相互作用[J]. 应用力学学报, 2014,31(4): 518-524. (MENG Hui, ZHANG Xingwei, NIU Xiaodong, et al. Lattice Boltzmann analysis of bubble motion and interaction[J]. Chinese Journal of Applied Mechanics,2014,31(4): 518-524. (in Chinese))
    [20] 张磊. 气泡间相互作用机理的数值模拟[D]. 硕士学位论文. 重庆: 重庆大学, 2015. (ZHANG Lei. Numerical simulation of interaction mechanism between bubbles[D]. Master Thesis. Chongqing: Chongqing University, 2015. (in Chinese))
    [21] 雷杰, 王昱, 马明, 等. 基于FTM方法的双气泡融合特性模拟[J]. 过程工程学报, 2019,19(2): 263-270. (LEI Jie, WANG Yu, MA Ming, et al. Numerical simulation of coalescence of double bubbles using FTM[J]. The Chinese Journal of Process Engineering,2019,〖STHZ〗 19(2): 263-270. (in Chinese))
    [22] MURADOGLU M, TRYGGVASON G. Simulations of soluble surfactants in 3D multiphase flow[J]. Journal of Computational Physics,2014,274: 737-757.
    [23] LEVICH V G. Physicochemical Hydrodynamics [M]. Englewood Cliffs: Prentice Hall, 1962.
    [24] FUKUTA M, TAKAGI S, MATSUMOTO Y. The effect of surface velocity on lift force for a spherical bubble in a linear shear flow[J]. Theoretical & Applied Mechanics Japan,2005,54: 227-234.
    [25] TASOGLU S, DEMIRCI U, MURADOGLU M. The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble[J]. Physics of Fluids,2008,20(4): 040805-040819.
    [26] PALAPARTHI R, PAPAGEORGIOU D T, MALDARELLI C. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles[J]. Journal of Fluid Mechanics,2006,559: 1-44.
    [27] FUKUTA M, TAKAGI S, MATSUMOTO Y. Numerical study on the shear-induced lift force acting on a spherical bubble in aqueous surfactant solutions[J]. Physics of Fluids,2008,20(4): 040704-040712.
    [28] HAYASHI K, TOMIYAMA A. Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe[J]. International Journal of Multiphase Flow,2012,39: 78-87.
  • 加载中
计量
  • 文章访问数:  3073
  • HTML全文浏览量:  52
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-05-22
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回