[1] |
TAKAGI S, MATSUMOTO Y. Surfactant effects on bubble motion and bubbly flows[J]. Annual Review of Fluid Mechanics,2011,43(1): 615-636.
|
[2] |
PALAPARTHI R, PAPAGEORGIOU D T, MALDARELLI C. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles[J]. Journal of Fluid Mechanics,2006,559: 1-44.
|
[3] |
CUENOT B, MAGNAUDET J, SPENNATO B. The effects of slightly soluble surfactants on the flow around a spherical bubble[J]. Journal of Fluid Mechanics,1997,339: 25-53.
|
[4] |
JAREK E, WARSZYNSKI P, KRZAN M. Influence of different electrolytes on bubble motion in ionic surfactants solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,505: 171-178.
|
[5] |
SABONI A, ALEXANDROVA S, KARSHEVA M. Effects of interface contamination on mass transfer into a spherical bubble[J]. Journal of Chemical Technology & Metallurg y, 2015,50(5): 589-596.
|
[6] |
KISHORE N, NALAJALA V S, CHHABRA R P. Effects of contamination and shear-thinning fluid viscosity on drag behavior of spherical bubbles[J]. Industrial & Engineering Chemistry Research,2013,52(17): 6049-6056.
|
[7] |
NALAJALA V S, KISHORE N. Drag of contaminated bubbles in power-law fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,443: 240-248.
|
[8] |
NALAJALA V S, KISHORE N. Motion of partially contaminated bubbles in power-law liquids: effect of wall retardation[J]. International Journal of Mineral Processing,2015,140: 8-18.
|
[9] |
PESCI C, WEINER A, MARSCHALL H, et al. Computational analysis of single rising bubbles influenced by soluble surfactant[J]. Journal of Fluid Mechanics,2018,856: 709-763.
|
[10] |
FEI Y, PANG M J. A treatment for contaminated interfaces and its application to study the hydrodynamics of a spherical bubble contaminated by surfactants[J]. Chemical Engineering Science,2019,200: 87-102.
|
[11] |
HOSOKAWA S, MASUKURA Y, HAYASHI K, et al. Experimental evaluation of Marangoni stress and surfactant concentration at interface of contaminated single spherical drop using spatiotemporal filter velocimetry[J]. International Journal of Multiphase Flow,2017,97: 157-167.
|
[12] |
HOSOKAWA S, HAYASHI K, TOMIYAMA A. Evaluation of adsorption of surfactant at a moving interface of a single spherical drop[J]. Experimental Thermal and Fluid Science,2018,96: 397-405.
|
[13] |
CLIFT R, GRACE J R, WEBER M E. Bubbles, Drops, and Particles [M]. New York: Academic Press, 1978.
|
[14] |
SABONI A, ALEXANDROVA S, MORY M. Flow around a contaminated fluid sphere[J]. International Journal of Multiphase Flow,2010,〖STHZ〗 36(6): 503-512.
|
[15] |
DANI A, COCKX A, GUIRAUD P. Direct numerical simulation of mass transfer from spherical bubbles: the effect of interface contamination at low Reynolds numbers[J]. International Journal of Chemical Reactor Engineering,2006,4. DOI: 10.2202/1542-6580.1304.
|
[16] |
庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响[J]. 应用数学和力学, 2020,41(2): 143-155. (PANG Mingjun, NIU Ruipeng, LU Minjie. Wall effects on floating characteristics of bubbles in shear-thining fluids[J]. Applied Mathematics and Mechanics,2020,41(2): 143-155. (in Chinese))
|
[17] |
DUKHIN S S, LOTFI M, KOVALCHUK V I, et al. Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspect s, 2016,492: 127-137.
|
[18] |
李少白, 徐双, 范俊赓, 等. 非牛顿流体中在线双气泡相互作用的数值模拟[J]. 沈阳航空航天大学学报, 2017,34(4): 63-68. (LI Shaobai, XU Shuang, FAN Jungeng, et al. Numerical simulation of interaction between in-line two bubbles in non-Newtonian fluids[J]. Journal of Shenyang Aerospace University,2017,34(4): 63-68. (in Chinese))
|
[19] |
孟辉, 张兴伟, 牛小东, 等. 格子Boltzmann方法分析气泡的运动及其相互作用[J]. 应用力学学报, 2014,31(4): 518-524. (MENG Hui, ZHANG Xingwei, NIU Xiaodong, et al. Lattice Boltzmann analysis of bubble motion and interaction[J]. Chinese Journal of Applied Mechanics,2014,31(4): 518-524. (in Chinese))
|
[20] |
张磊. 气泡间相互作用机理的数值模拟[D]. 硕士学位论文. 重庆: 重庆大学, 2015. (ZHANG Lei. Numerical simulation of interaction mechanism between bubbles[D]. Master Thesis. Chongqing: Chongqing University, 2015. (in Chinese))
|
[21] |
雷杰, 王昱, 马明, 等. 基于FTM方法的双气泡融合特性模拟[J]. 过程工程学报, 2019,19(2): 263-270. (LEI Jie, WANG Yu, MA Ming, et al. Numerical simulation of coalescence of double bubbles using FTM[J]. The Chinese Journal of Process Engineering,2019,〖STHZ〗 19(2): 263-270. (in Chinese))
|
[22] |
MURADOGLU M, TRYGGVASON G. Simulations of soluble surfactants in 3D multiphase flow[J]. Journal of Computational Physics,2014,274: 737-757.
|
[23] |
LEVICH V G. Physicochemical Hydrodynamics [M]. Englewood Cliffs: Prentice Hall, 1962.
|
[24] |
FUKUTA M, TAKAGI S, MATSUMOTO Y. The effect of surface velocity on lift force for a spherical bubble in a linear shear flow[J]. Theoretical & Applied Mechanics Japan,2005,54: 227-234.
|
[25] |
TASOGLU S, DEMIRCI U, MURADOGLU M. The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble[J]. Physics of Fluids,2008,20(4): 040805-040819.
|
[26] |
PALAPARTHI R, PAPAGEORGIOU D T, MALDARELLI C. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles[J]. Journal of Fluid Mechanics,2006,559: 1-44.
|
[27] |
FUKUTA M, TAKAGI S, MATSUMOTO Y. Numerical study on the shear-induced lift force acting on a spherical bubble in aqueous surfactant solutions[J]. Physics of Fluids,2008,20(4): 040704-040712.
|
[28] |
HAYASHI K, TOMIYAMA A. Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe[J]. International Journal of Multiphase Flow,2012,39: 78-87.
|