[1] |
SAW K, KATTI B K, JOSHI G. Literature review of traffic assignment: static and dynamic[J]. International Journal of Transportation Engineering,2015,2(4): 339-347.
|
[2] |
WONG W, WONG S C. Network topological effects on the macroscopic bureau of public roads function[J]. Transportmetrica A: Transport Science,2016,12(3): 272-296.
|
[3] |
LEBACQUE J P. The Godunov scheme and what it means for first order traffic flow models[C]//LESORT J B, ed. Proceedings of the Thirteenth International Symposium on Transportation and Traffic Theory.France, 1995.
|
[4] |
DAGANZO C F. The cell transmission model, part Ⅱ: network traffic[J]. Transportation Research Part B,1995,29(2): 79-93.
|
[5] |
COCLITE G M, GARAVELLO M, PICCOLI B. Traffic flow on a road network[J]. SIAM Journal on Mathematical Analysis,2005,36: 1862-1886.
|
[6] |
GARAVELLO M, NATALINI R, PICCOLI B, et al. Conservation laws with discontinuous flux[J]. Networks and Heterogenous Media,2007,2(1): 159-179.
|
[7] |
LIN Z Y, ZHANG P, DONG L Y, et al. Traffc flow on a road network using a conserved higher-order model[C]// AIP Conference Proceedings.Greece: AIP Publishing, 2015.
|
[8] |
LO H K, SZETO W Y. A cell-based variational inequality formulation of the dynamic user optimal assignment problem[J]. Transportation Research Part B: Methodological,2002,36(5): 421-443.
|
[9] |
FRIESZ T L, HAN K, NETO P A, et al. Dynamic user equilibrium based on a hydrodynamic model[J]. Transportation Research Part B: Methodological,2013,47: 102-126.
|
[10] |
ZHANG Z, WOLSHON B, DIXIT V V. Integration of a cell transmission model and macroscopic fundamental diagram: network aggregation for dynamic traffic models[J]. Transportation Research Part C: Emerging Technologies,2015,55: 298-309.
|
[11] |
CHENG Q, LIU Z, SZETO W Y. A cell-based dynamic congestion pricing scheme considering travel distance and time delay[J]. Transportmetrica B: Transport Dynamics,2019,7(1): 1286-1304.
|
[12] |
JIANG Y Q, WONG S C, ZHANG P, et al. Dynamic continuum model with elastic demand for a polycentric urban city[J]. Transportation Science,2017,51(3): 931-945.
|
[13] |
LIN Z Y, WONG S C, ZHANG P, et al. A predictive continuum dynamic user-optimal model for the simultaneous departure time and route choice problem in a polycentric city[J]. Transportation Science,2018,52(6): 1496-1508.
|
[14] |
LIGHTHILL M J, WHITHAM G B. On kinematic waves, Ⅱ: a theory of traffic flow on long crowded roads[J]. Proceedings of the Royal Society of London(Series A),1955,22: 317-345.
|
[15] |
RICHARDS P I. Shockwaves on the highway[J]. Operation Research,1956,4: 42-51.
|
[16] |
JIN W L. On the existence of stationary states in general road networks[J]. Transportation Research Part B: Methodological,2015,81: 917-929.
|
[17] |
JIN W L. On the stability of stationary states in general road networks[J]. Transportation Research Part B: Methodological,2017,98: 42-61.
|
[18] |
WU C X, ZHANG P, WONG S C, et al. Steady-state traffic flow on a ring road with up- and down-slopes[J]. Physica A,2014,403: 85-93.
|
[19] |
TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics [M]. Heidelberg: Springer-Verlag, 1999.
|
[20] |
姜锐, 吴清松, 朱祚金. 各向异性交通流动力学模型的波动特性[J]. 应用数学和力学, 2002,23(4): 371-375.(JIANG Rui, WU Qingsong, ZHU Zuojin. Kinematic wave properties of anisotropic dynamics model for traffic flow[J]. Applied Mathematics and Mechanics,2002,23(4): 371-375.(in Chinese))
|
[21] |
董力耘, 薛郁, 戴世强. 基于跟车思想的一维元胞自动机交通流模型[J]. 应用数学和力学, 2002,23(4): 331-337.(DONG Liyun, XUE Yu, DAI Shiqiang. One-dimensional cellular automaton model of traffic flow based on car-following idea[J]. Applied Mathematics and Mechanics,2002,23(4): 331-337.(in Chinese))
|
[22] |
罗振东, 徐源. 守恒高阶各向异性交通流模型基于POD方法的降阶外推差分格式[J]. 应用数学和力学, 2015,36(8): 875-886.(LUO Zhendong, XU Yuan. A reduced-order extrapolating FDM for conserved high-order anisotropic traffic flow models[J]. Applied Mathematics and Mechanics,2015,36(8): 875-886.(in Chinese))
|