留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气液耦合系统中固有频率的实验研究

卫志军 翟钢军 吴锤结

卫志军, 翟钢军, 吴锤结. 气液耦合系统中固有频率的实验研究[J]. 应用数学和力学, 2021, 42(2): 133-141. doi: 10.21656/1000-0887.410207
引用本文: 卫志军, 翟钢军, 吴锤结. 气液耦合系统中固有频率的实验研究[J]. 应用数学和力学, 2021, 42(2): 133-141. doi: 10.21656/1000-0887.410207
WEI Zhijun, ZHAI Gangjun, WU Chuijie. Experimental Investigation of Natural Frequencies of Gas-Liquid Coupled Systems in Tanks[J]. Applied Mathematics and Mechanics, 2021, 42(2): 133-141. doi: 10.21656/1000-0887.410207
Citation: WEI Zhijun, ZHAI Gangjun, WU Chuijie. Experimental Investigation of Natural Frequencies of Gas-Liquid Coupled Systems in Tanks[J]. Applied Mathematics and Mechanics, 2021, 42(2): 133-141. doi: 10.21656/1000-0887.410207

气液耦合系统中固有频率的实验研究

doi: 10.21656/1000-0887.410207
基金项目: 国家自然科学基金(11602051;51779040);中国博士后科学基金(2016M591433);辽宁省自然基金(20170540151) ;中央高校基本科研业务费 (DUT19RC(3)023)
详细信息
    作者简介:

    卫志军(1985—),女,讲师,博士(E-mail: wzjdlut@dlut.edu.cn);吴锤结(1955—),男,教授(通讯作者. E-mail: cjwudut@dlut.edu.cn).

  • 中图分类号: U663.85|U661

Experimental Investigation of Natural Frequencies of Gas-Liquid Coupled Systems in Tanks

Funds: The National Natural Science Foundation of China(11602051;51779040)
  • 摘要: 流体砰击现象广泛存在于海洋环境、航空航天等自然界与工程中.流体砰击大尺度结构过程中,自由液面破碎时会包裹气体进入流场,气液混合易导致局部砰击荷载增大,引起结构破坏的危险.砰击过程中,气室压力对自由液面固有模态的影响尚未有系统的研究报道.该文采用物理模型实验方法在二维储舱内设计并开展一系列实验,系统研究了两种不同的气室压力对耦合系统的固有频率和阻尼的影响.实验中采用高速摄影机记录了自由液面振荡过程,通过自主研制的图像处理软件提取自由液面波高.结果表明:在低气室压力下,晃荡能量主要集中于一阶固有频率;在高气室压力下,晃荡能量主要集中于二阶固有频率.随着气室压强的增大,影响液体晃荡的主要固有频率提高,而对应的阻尼比却随之降低.因此,气体可压缩性是研究流体晃荡的一个重要因素.
  • [1] 卫志军, 岳前进, 阮诗伦, 等. 矩形液舱晃荡冲击荷载的试验机理研究[J]. 船舶力学, 2012,16(28): 885-892.(WEI Zhijun, YUE Qianjin, RUAN Shilun, et al. Experimental study on sloshing impact load of rectangular liquid tank[J]. Ship Mechanics,2012,16(8): 885-892.(in Chinese))
    [2] 卫志军, 岳前进, 张文首, 等. 大尺度储舱液体晃荡砰击压力测量方法研究[J]. 中国科学: 物理 力学 天文学, 2014,44(7): 746-758.(WEI Zhijun, YUE Qianjin, ZHANG Wenshou, et al. Study on the measurement method of liquid sloshing slamming pressure in large scale cabin[J]. Scientia Sinica: physica, Mechanica & Astronomica,2014,44(7): 746-758.(in Chinese))
    [3] WEI Z J, YUE Q J. Experimental investigation of non-similarity slamming phenomena in geometrically similar tanks[J]. International Journal of Offshore and Polar Engineering,2015,25(4): 288-298.
    [4] 卫志军, 陈晓东, 董玉山, 等. 两种平台下晃荡冲击荷载的实验研究[J]. 船舶力学, 2015,19(7): 841-849.(WEI Zhijun, CHEN Xiaodong, DONG Yushan, et al. Experimental study on sloshing impact loads on two platforms[J]. Ship Mechanics,2015,19(7): 841-849.(in Chinese))
    [5] 王立时, 李遇春, 张皓. 二维晃动自然频率与阻尼比系数的试验识别[J]. 振动与冲击, 2016,35(8): 173-176.(WANG Lishi, LI Yuchun, ZHANG Hao. Experimental identification of two-dimensional sloshing natural frequency and damping ratio coefficient[J]. Journal of Vibration and Shock,2016,35(8): 173-176.(in Chinese))
    [6] DODGE F T. The new dynamic behavior of liquids in moving containers[R]. San Antonio, TX: Southwest Research Institute, 2000.
    [7] 吕敬, 李俊峰, 王天舒. 带弹性附件充液矩形贮箱俯仰运动动态响应[J]. 应用数学和力学, 2007,28(3): 317-327.(L Jing, LI Junfeng, WANG Tianshu. Dynamic response of pitching motion of liquid-filled rectangular tank with elastic attachment[J]. Applied Mathematics and Mechanics,2007,28(3): 317-327.(in Chinese)
    [8] LI Y C, WANG Z. An approximate analytical solution of sloshing frequencies for a liquid in various shape aqueducts[J]. Shock and Vibration,2014,11: 672648.
    [9] 李遇春, 张皓. 二维晃动模态的统一Ritz计算格式[J]. 振动与冲击, 2014,33(19): 81-85.(LI Yuchun, ZHANG Hao. Unified Ritz calculation scheme for two-dimensional sloshing mode[J]. Journal of Vibration and Shock,2014,33(19): 81-85.(in Chinese))
    [10] 蒋梅荣, 任冰, 温鸿杰, 等. 弹性液舱内液体晃荡实验研究[J]. 海洋工程, 2013,31(5): 1-10.(JIANG Meirong, REN Bing, WEN Hongjie, et al. Experimental study on liquid sloshing in elastic liquid tank[J]. The Ocean Engineering,2013,31(5): 1-10.(in Chinese))
    [11] 王鹏翔, 李遇春, 王立时. 矩形容器内液体一阶晃动模态试验识别[C]//第26届全国结构工程学术会议论文集(第Ⅱ册). 2017.(WANG Pengxiang, LI Yuchun, WANG Lishi. Experimental identification of 1st-order sloshing mode of liquid in rectangular container[C]// Proceedings of the 26th National Conference on Structural Engineering (Vol Ⅱ) . 2017.(in Chinese))
    [12] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis[J]. Proceedings of the Royal Society of London,1998,455(1971): 903-995.
    [13] 王慧, 刘正士. 一种识别结构模态阻尼比的方法[J]. 农业机器学报, 2008,39(6): 201-202.(WANG Hui, LIU Zhengshi. Method for identifying structural modal damping ratio[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(6): 201-202.(in Chinese))
    [14] 黄时春. 水下爆炸荷载作用下舰船阻尼特性的试验研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2016.(HUANG Shichun. Experimental study on the damping characteristics of warship under the action of underwater explosion load[D]. Master Thesis. Harbin: Harbin Engineering University, 2016.(in Chinese))
    [15] 付晓波. 经验模态分解法理论研究与应用[D]. 硕士学位论文. 太原: 太原理工大学, 2013.(FU Xiaobo. Theoretical study and application of empirical mode decomposition[D]. Master Thesis. Taiyuan: Taiyuan University of Technology, 2013.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  273
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-10
  • 修回日期:  2021-01-04
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回