留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电场驱动下液体薄膜的几何形状

E·M·田 T·P·斯沃博德内 J·D·菲利普斯

E·M·田, T·P·斯沃博德内, J·D·菲利普斯. 静电场驱动下液体薄膜的几何形状[J]. 应用数学和力学, 2011, 32(8): 973-980. doi: 10.3879/j.issn.1000-0887.2011.08.008
引用本文: E·M·田, T·P·斯沃博德内, J·D·菲利普斯. 静电场驱动下液体薄膜的几何形状[J]. 应用数学和力学, 2011, 32(8): 973-980. doi: 10.3879/j.issn.1000-0887.2011.08.008
Emily M. Tian, Thomas P. Svobodny, Jason D. Phillips. Thin Liquid Film Morphology Driven by Electro-Static Field[J]. Applied Mathematics and Mechanics, 2011, 32(8): 973-980. doi: 10.3879/j.issn.1000-0887.2011.08.008
Citation: Emily M. Tian, Thomas P. Svobodny, Jason D. Phillips. Thin Liquid Film Morphology Driven by Electro-Static Field[J]. Applied Mathematics and Mechanics, 2011, 32(8): 973-980. doi: 10.3879/j.issn.1000-0887.2011.08.008

静电场驱动下液体薄膜的几何形状

doi: 10.3879/j.issn.1000-0887.2011.08.008
详细信息
  • 中图分类号: O357.1

Thin Liquid Film Morphology Driven by Electro-Static Field

  • 摘要: 利用六边形-俯视图的弱非线性稳定性分析和数值仿真,在电场作用下,研究高分子薄膜表面静态模式的发展过程.在无限空间域上,空间和高分子薄膜之间的界面,由薄膜方程给出其随时间的演变,综合考虑了电力的驱动和表面张力的传播.非线性界面的增长包括:波幅方程的增长,以及在准对规律方向上,一维结构的叠合.模式的选择由亚临界不稳定性机理确定,高分子薄膜的相对厚度在其中起着决定性的作用.
  • [1] Chou S Y, Zhuang L. Lithographically induced self-assembly of periodic polymer micropillar arrays[J]. J Vac Sci Technol B, 1999, 17(6): 3197-3202.
    [2] Schffer E, Thurn-Albrecht T, Russell T P, Stelner U. Electrically induced structure formation and pattern transfer[J]. Nature, 2000, 403: 874-877. doi: 10.1038/35002540
    [3] Wu N, Russel W B. Electric-field-induced patterns in thin polymer films: weakly nonlinear and fully nonlinear evolution[J]. Langmuir, 2005, 21(26):12290-12302. doi: 10.1021/la052099z
    [4] Kim D, Lu W. Interface instability and nanostructure patterning[J]. Computational Materials Science, 2006, 38(2): 418-425. doi: 10.1016/j.commatsci.2006.03.015
    [5] Lin Z Q, Kerle T, Baker S M, Hoagland D A. Electric field induced instabilities at liquid/liquid interfaces[J]. Journal of Chemical Physics, 2001, 114(5): 2377-2381. doi: 10.1063/1.1338125
    [6] Pease L F III, Russel W B. Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: a generalized linear stability analysis[J]. Journal of Chemical Physics, 2003, 118(8): 3790-3803. doi: 10.1063/1.1529686
    [7] Pease L F III, Russel W B. Limitations on length scales for electrostatically induced submicrometer pillars and holes[J]. Langmuir, 2004, 20(3): 795-804. doi: 10.1021/la035022o
    [8] Schffer E, Thurn-Albrecht T, Russell T P, Stelner U. Electrohydrodynamic instabilities in polymer films[J]. Europhysics Letters, 2001, 53(4), 518-524.
    [9] Tian E M. Pattern formation induced by an electric field in thin liquid films[J]. Journal of Mathematics, Statistics, and Allied Fields, 2007, 1(1):1-6.
    [10] Wu N, Russel W B. Micro- and nano-patterns created via electrohydrodynamic instabilities[J]. Nano Today, 2009, 4(2): 180-192. doi: 10.1016/j.nantod.2009.02.002
    [11] Yeoh H K, Xu Q, Basaran O A. Equilibrium shapes and stability of a liquid film subjected to a nonuniform electric field[J]. Physics of Fluids, 2007, 19(11):114111. doi: 10.1063/1.2798806
    [12] Pease L F III, Russel W B. Linear stability analysis of thin leaky dielectric films subjected to electric fields[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 102(2): 233-250. doi: 10.1016/S0377-0257(01)00180-X
    [13] Shanker V, Sharma A. Instability of the interface between thin fluid films subjected to electric fields[J]. Journal of Colloid and Interface Science, 2004, 274(1): 294-308. doi: 10.1016/j.jcis.2003.12.024
    [14] Verma R, Sharma A, Kargupta K, Bhaumik J. Electric field induced instability and pattern formation in thin liquid films[J]. Langmuir, 2005, 21(8): 3710-3721. doi: 10.1021/la0472100
    [15] Scanlon J W, Segel L A. Finite amplitude cellular convection induced by surface tension[J]. J Fluid Mech, 1967, 30(1): 149-162. doi: 10.1017/S002211206700134X
    [16] Segel L A, Stuart J T. On the question of the preferred mode in cellular thermal convection[J]. J Fluid Mech, 1962, 13(2): 289-306. doi: 10.1017/S0022112062000683
    [17] Segel L A. The nonlinear interaction of a finite number of disturbances to a layer of fluid heated from below[J]. J Fluid Mech, 1965, 21(2): 359-384. doi: 10.1017/S002211206500023X
    [18] Busse F H. The stability of finite amplitude cellular convection and its relation to an extremum principle[J]. J Fluid Mech, 1967, 30(4): 625-649. doi: 10.1017/S0022112067001661
    [19] Palm E. Nonlinear thermal convection[J]. Ann Rev Fluid Mech, 1975, 7: 39-61. doi: 10.1146/annurev.fl.07.010175.000351
    [20] Tian E M, Wollkind D J. Nonlinear stability analyses of pattern formation in thin liquid films[J]. Interfaces and Free Boundaries, 2003, 5: 1-25.
    [21] Wollkind D J, Sriranganathan R, Oulton D B. Interfacial patterns during plane front alloy solidification[J]. Physica D, 1984, 12(1/3):215-240. doi: 10.1016/0167-2789(84)90526-8
    [22] Wollkind D J, Stephenson L E. Chemical turing pattern formation analyses: comparison of theory with experiment[J]. SIAM J Appl Math, 2000, 61(2): 387-431. doi: 10.1137/S0036139997326211
    [23] Chang H C. Wave evolution on a falling film[J]. Annu Rev Fluid Mech, 1994, 26: 103-36. doi: 10.1146/annurev.fl.26.010194.000535
    [24] Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films[J]. Reviews of Modern Physics, 1997, 69(3): 931-980. doi: 10.1103/RevModPhys.69.931
    [25] Landau L D, Lifshitz E M. Electrodynamics of Continuous Media[M]. New York: Pergamon Press, 1960.
    [26] Saville D A. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model[J]. Annu Rev Fluid Mech, 1997, 29: 27-64. doi: 10.1146/annurev.fluid.29.1.27
    [27] Zaks M A, Auer M, Busse F H. Undulating rolls and their instabilities in a Rayleigh-Benard layer[J]. Physical Review E, 1996, 53(5): 4807-4819. doi: 10.1103/PhysRevE.53.4807
    [28] Davis S H. Thermocapillary instabilities[J]. Ann Rev Fluid Mech, 1987, 19: 403-435. doi: 10.1146/annurev.fl.19.010187.002155
  • 加载中
计量
  • 文章访问数:  1661
  • HTML全文浏览量:  159
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-17
  • 修回日期:  2011-05-24
  • 刊出日期:  2011-08-15

目录

    /

    返回文章
    返回