留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场、多孔性和各向异性动脉壁有多处狭窄段时对血液流动的影响

Kh·S·梅克赫默 M·H·哈劳恩 M·A·艾可特

Kh·S·梅克赫默, M·H·哈劳恩, M·A·艾可特. 磁场、多孔性和各向异性动脉壁有多处狭窄段时对血液流动的影响[J]. 应用数学和力学, 2011, 32(8): 981-997. doi: 10.3879/j.issn.1000-0887.2011.08.009
引用本文: Kh·S·梅克赫默, M·H·哈劳恩, M·A·艾可特. 磁场、多孔性和各向异性动脉壁有多处狭窄段时对血液流动的影响[J]. 应用数学和力学, 2011, 32(8): 981-997. doi: 10.3879/j.issn.1000-0887.2011.08.009
Kh. S. Mekheimer, Mohamed H. Haroun, M. A. El Kot. Effects of Magnetic Field,Porosity and Wall Properties for Anisotropically Elastic Multi-Stenosis Arteries on the Characteristics of Blood Flow[J]. Applied Mathematics and Mechanics, 2011, 32(8): 981-997. doi: 10.3879/j.issn.1000-0887.2011.08.009
Citation: Kh. S. Mekheimer, Mohamed H. Haroun, M. A. El Kot. Effects of Magnetic Field,Porosity and Wall Properties for Anisotropically Elastic Multi-Stenosis Arteries on the Characteristics of Blood Flow[J]. Applied Mathematics and Mechanics, 2011, 32(8): 981-997. doi: 10.3879/j.issn.1000-0887.2011.08.009

磁场、多孔性和各向异性动脉壁有多处狭窄段时对血液流动的影响

doi: 10.3879/j.issn.1000-0887.2011.08.009
详细信息
  • 中图分类号: R318.01; R543.5; O361.3

Effects of Magnetic Field,Porosity and Wall Properties for Anisotropically Elastic Multi-Stenosis Arteries on the Characteristics of Blood Flow

  • 摘要: 建立一个血液流动的数学模型:多孔介质在磁场作用下,血液流过一段有多处狭窄段的弹性动脉;用一个各向异性的弹性圆柱形管道模拟动脉,用粘性不可压缩的导电流体表示血液,动脉有轻微的局部性狭窄,形成一段内腔局部变窄的动脉,并完成该模型的数学分析.详细阐述了血管壁参数对血液流动的影响,参数包括纵向和圆周向的粘弹性应力分量Tt和Tθ、血管壁的各向异性度γ、血管及其周边结缔组织的总质量M、完全栓管中粘性约束的贡献C和弹性约束的贡献K,并用图形表示壁面剪切应力的分布、径向和轴向的速度等.还研究了狭窄形状参数m、渗透率常数κ、Hartmann数Ha和血管狭窄区的最大高度δ,对血液流动特征的影响.研究表明,流动受到周边结缔组织(动脉壁运动)的影响式微,血管壁的各向异性度,是确定动脉材料的一个重要指标.进一步发现壁剪切力分布,随着Tt和γ的增加而增加,随着Tθ,M,C和K的增加而减少.壁面剪切应力分布的传播,以及壁面处阻力阻抗的传播,栓管与自由管相比要低得多;狭窄段咽喉处的剪切应力分布特性,完全栓管和自由管正相反.靠近中心线的俘获区大小,随着渗透率κ的增加而增大;随着Hartmann数Ha的增加而减小.最后,狭窄段非对称时,逐渐形成俘获区;狭窄段对称时,不出现俘获区,各向同性自由管(无初始应力)中俘获区的大小,比完全栓管中的小得多.
  • [1] Chakravarty S, Ghosh Chowdhury A. Response of blood flow through an artery under stenotic conditions[J]. Rheol Acta, 1988, 27(4): 418-427. doi: 10.1007/BF01332163
    [2] Mekheimer Kh S, Haroun Mohammed H, El Kot M A. Induced magnetic field influences on blood flow through an anisotropically tapered elastic arteries with overlapping stenosis in an annulus[J]. Can J Phys, 2011, 89(2): 201-212. doi: 10.1139/P10-103
    [3] Craig I J D, Watson P G. Magnetic reconnection solutions based on a generalized Ohm’s law[J]. Solar Physics, 2003, 214(1): 131-150. doi: 10.1023/A:1024075416016
    [4] Stud V K, Sephon G S, Mishra R K. Pumping action on blood flow by a magnetic field[J]. Bulletin Math Biology, 1977, 39(3): 385-390.
    [5] Agrawal H L, Anwaruddin B. Peristaltic flow of blood in a branch[J]. Ranchi Univ Math J, 1984, 15: 111-121.
    [6] Abd Elnaby M A, Haroun M H. A new model for study the effect of wall properties on peristaltic transport of a viscous fluid[J]. Communications in Nonlinear Sci and Num Simulation, 2008, 13(4): 752-762. doi: 10.1016/j.cnsns.2006.07.007
    [7] Haroun M H. On non-linear magnetohydrodynamic flow due to peristaltic transport of an old rayed 3-constant fluid[J]. Z Naturforsch A, 2006, 61: 263-274.
    [8] Haroun M H. Non-linear peristaltic flow of a fourth grage fluid in an inclined asymmetric channel[J]. Computational Material Sci, 2007, 39(2): 324-333. doi: 10.1016/j.commatsci.2006.06.012
    [9] Mekheimer Kh S, El Kot M A. The micropolar fluid model for blood flow through stenotic arteries[J]. Int J Pure and Appl Math, 2007, 4(36): 393-405.
    [10] 梅克赫默 Kh S, El 科特 M A. 磁场和Hall电流对狭窄动脉中血液流动的影响[J]. 应用数学和力学, 2008, 29(8): 991-1002.(Mekheimer Kh S, El Kot M A. Influence of magnetic field and Hall currents on blood flow through stenotic artery[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(8): 1093-1104.)
    [11] Mekheimer Kh S, El Kot M A. The micropolar fluid model for blood flow through a tapered arteries with a stenosis[J]. Acta Mech Sin, 2008, 24(6): 637- 644. doi: 10.1007/s10409-008-0185-7
    [12] Mekheimer Kh S, El Kot M A. Suspension model for blood flow through arterial catheterization[J]. Chem Eng Comm, 2010, 197(9):1-20.
    [13] Biswas D, Chakraborty U S. Pulsatile blood flow through a catheterized artery with an axially nonsymmetrical stenosis[J]. Applied Mathematical Sciences, 2010, 4(58): 2865-2880.
    [14] Srivastavaa V P, Rastogi Rati, Vishnoi Rochana. A two-layered suspension blood flow through an overlapping stenosis[J]. Computers and Mathematics With Applications, 2010, 60(3): 432-441. doi: 10.1016/j.camwa.2010.04.038
    [15] Sankar D S, Lee Usik. Two-fluid Casson model for pulsatile blood flow through stenosed arteries: a theoretical model[J]. Commun Nonlinear Sci Numer Simulat, 2010, 15(8): 2086-2097. doi: 10.1016/j.cnsns.2009.08.021
    [16] Srivastava V P, Mishra Shailesh, Rastogi Rati. Non-Newtonian arterial blood flow through an overlapping stenosis[J]. A A M International Journal, 2010, 5(1): 225-238.
    [17] Siddiqui S U, Verma N K, Mishra S, Gupta R S. Mathematical modeling of pulsatile flow of Casson’s fluid in arterial stenosis[J]. Applied Mathematics and Computation, 2009, 210(1): 1-10. doi: 10.1016/j.amc.2007.05.070
    [18] Layek G C, Mukhopadhyay S, Gorla Rama Subba Reddy. Unsteady viscous flow with variable viscosity in a vascular tube with an overlapping constriction[J]. International Journal of Engineering Science, 2009,47(5/6): 649-659. doi: 10.1016/j.ijengsci.2009.01.011
    [19] Pincombe B, Mazumdar J, Hamilton-Craig I. Effects of multiple stenoses and post-stenotic dilatation on non-Newtonian blood flow in small arteries[J]. Medical & Biological Engineering & Computing, 1999, 37(5): 595-599.
    [20] Tashtoush B, Magableh. Magnetic field effect on heat transfer and fluid flow characteristics of blood flow in multi-stenosis arteries[J]. Heat Mass Transfer, 2008,44(3): 297-304.
    [21] Li M X, Beech-Brandta J J, Johnb L R, Hoskinsc P R, Eassona W J. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses[J]. Journal of Biomechanics, 2007, 40(16): 3715-3724. doi: 10.1016/j.jbiomech.2007.06.023
    [22] Mishra B K, Verma N. Magnetic effect on blood flow in a multiple stenosed artery[J]. Appl Math Comp, 2007, 1: 1-7.
    [23] Chakravarty S, Datta A, Mandal P K. Analysis of nonlinear blood flow in a stenosed flexible artery[J]. Int J Engng Sci, 1995, 33(12): 1821-1837. doi: 10.1016/0020-7225(95)00022-P
    [24] Chakravarty S. Pulsatile blood flow through arterioles[J]. Rheol Acta, 1987, 26(2): 200-207. doi: 10.1007/BF01331978
    [25] Atabek H B, Lew H S. Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube[J]. Biophysical Journal, 1966, 6(4): 481-503. doi: 10.1016/S0006-3495(66)86671-7
    [26] Atabek H B. Wave propagation through a viscus fluid contained in a tethered, initially stressed, othotropic elastic tube[J]. Biophysical Journal, 1968,8(5): 626-649. doi: 10.1016/S0006-3495(68)86512-9
    [27] Kalita P, Schaefer R. Mechanical models of artery walls[J]. Arch Comput Methods Eng, 2008, 15(1): 1-36. doi: 10.1007/s11831-007-9015-5
    [28] Chakravarty S, Sarifuddin, Mandal P K. Unsteady flow of a two-layer blood stream past a tapered flexible artery under stenotic conditions[J]. Comp Methods in Appl Math, 2004, 4(4): 391-409.
  • 加载中
计量
  • 文章访问数:  1496
  • HTML全文浏览量:  179
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-16
  • 修回日期:  2011-04-10
  • 刊出日期:  2011-08-15

目录

    /

    返回文章
    返回