留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场和热辐射对可变表面热通量作用下的竖直圆锥体自然对流的影响

G·帕拉尼 K·Y·金

G·帕拉尼, K·Y·金. 磁场和热辐射对可变表面热通量作用下的竖直圆锥体自然对流的影响[J]. 应用数学和力学, 2012, 33(5): 574-587. doi: 10.3879/j.issn.1000-0887.2012.05.006
引用本文: G·帕拉尼, K·Y·金. 磁场和热辐射对可变表面热通量作用下的竖直圆锥体自然对流的影响[J]. 应用数学和力学, 2012, 33(5): 574-587. doi: 10.3879/j.issn.1000-0887.2012.05.006
G.Palanidoi: 10.3879/j.issn.1000-0887.2012.05.006
Citation: G.Palani<, Kwang Yong Kim. Influence of Magnetic Field and Thermal Radiation by Natural Convection Past a Vertical Cone Subjected to a Variable Surface Heat Flux[J]. Applied Mathematics and Mechanics, 2012, 33(5): 574-587. doi: 10.3879/j.issn.1000-0887.2012.05.006

磁场和热辐射对可变表面热通量作用下的竖直圆锥体自然对流的影响

doi: 10.3879/j.issn.1000-0887.2012.05.006
详细信息
  • 中图分类号: O357;O17

Influence of Magnetic Field and Thermal Radiation by Natural Convection Past a Vertical Cone Subjected to a Variable Surface Heat Flux

  • 摘要: 就圆锥体表面受到可变表面热通量作用,计及磁场和热辐射的综合影响,数值研究了流经竖直圆锥体的自然对流及其热交换特点.认为流体是灰色的、吸收-发射的辐射介质,而非散射介质,通过近似变换,将自由对流区中流动的边界层控制方程,简化为无量纲方程.利用Crank-Nicolson形式的隐式有限差分法(具有收敛快、精度高、无条件稳定的特点),求解了无量纲的控制方程.得到了数值结果,以及空气和水中的速度、温度、局部和平均的壁面剪应力、局部和平均的Nusselt数.将所得到的结果与先前文献报道的结果进行比较,发现两者有着很好的一致性.
  • [1] Merk H J, Prins J A. Thermal convection laminar boundary layer Ⅰ[J]. Appl Sci Res, 1954, 4(1):11-24.
    [2] Merk H J, Prins J A. Thermal convection laminar boundary layer Ⅱ[J]. Appl Sci Res, 1954, 4(3): 195-206.
    [3] Alamgir M. Overall heat transfer from vertical cones in laminar free convection: an approximate method[J]. ASME Journal of Heat Transfer, 1989, 101: 174-176.
    [4] Pop I, Takhar H S. Compressibility effects in laminar free convection from a vertical cone[J]. Appl Sci Res, 1991, 48(1): 71-82.
    [5] Pop I, Grosan T, Kumar M. Mixed convection along a vertical cone for fluids of any Prandtl number case of constant wall temperature[J]. Int J Numerical Methods Heat Fluid Flow, 2003, 13(7): 815-829.
    [6] Takhar H S, Chamkha A J, Nath G. Effect of thermo-physical quantities on the natural convection flow of gases over a vertical cone[J]. Int J Engg Sci, 2004, 42: 243-256.
    [7] Lin F N. Laminar convection from a vertical cone with uniform surface heat flux[J]. Letters Heat Mass Transfer, 1976, 3(1/2): 49-58.
    [8] Na T Y, Chiou J P. Laminar natural convection over a frustum of a cone[J]. Appl Sci Res, 1979, 35(5/6): 409-421.
    [9] Gorla R S R, Krishnan V, Pop I. Natural convection flow of a power-law fluid over a vertical frustum of a cone under uniform heat flux conditions[J]. Mech Res Comm, 1994, 21: 139-146.
    [10] Kumari M, Pop I. Free convection over a vertical rotating cone with constant wall heat flux[J]. J Appl Mech Engg, 1998, 3(3): 451-464.
    [11] Hossain M A, Paul S C, Mandal A C. Natural convection flow along a vertical circular cone with uniform surface temperature and surface heat flux in a thermally stratified medium[J]. Int J Numer Methods Heat Fluid Flow, 2002, 12(3): 290-305.
    [12] Bapuji P J, Ekambavannan K, Pop I. Transient laminar free convection from a vertical cone with non-uniform surface heat flux[J]. Studia Univ,Mathematica, 2008, 53(1): 75-99.
    [13] Sparrow E M, Cess R D. The effect of a magnetic field on free convection heat transfer[J]. International Journal of Heat and Mass Transfer, 1961, 3(4):267-274.
    [14] Cess R D. The interaction of thermal radiation with free convection heat transfer[J]. International Journal of Heat and Mass Transfer, 1966, 9(11):1269-1277.
    [15] Kumari M, Nath G. Development of two dimensional boundary layer with an applied magnetic field due to an impulsive motion[J]. Indian J Pure Appl Math, 1999, 30: 695-708.
    [16] Takhar H S, Chamkha A J, Nath G. Unsteady mixed convection flow from a rotating vertical cone with magnetic field[J]. Heat and Mass Transfer, 2003, 39(4): 297-304.
    [17] Ozturk A. Unsteady laminar mixed convection about a spinning sphere with a magnetic field[J]. Heat and Mass Transfer, 2005, 41(10): 864-874.
    [18] Chamkha A J, Al-Mudaf A. Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects[J]. Int J Thermal Sci, 2005, 44(3): 267-276.
    [19] Ece M C. Free convection flow about a vertical spinning cone under a magnetic field[J]. Applied Mathematics and Computation, 2006, 179(1): 231-242.
    [20] Soundalgekar V M, Takhar H S. Radiation effects on free convection flow past a semi-infinite vertical plate[J]. Modelling Measurement and Control, B, 1993, 51: 31-40.
    [21] Hossain M A, Takhar H S. Radiation effects on mixed convection along a vertical plate with uniform surface temperature[J]. Heat and Mass Transfer, 1996, 31(4): 243-248.
    [22] Raptis A, Perdikis C. Radiation and free convection flow past a moving plate[J]. Appl Mech and Engg, 1999, 4(4): 817-821.
    [23] Muthucumaraswamy R, Ganesan P. Radiation effects on flow past an impulsively started infinite vertical plate with variable temperature[J]. Int J Appl Mech Engg, 2003, 8(1): 125-129.
    [24] Raptis A, Massalas C V. Magnetohydrodynamic flow past a plate by the presence of radiation[J]. Heat and Mass Transfer, 1998, 34(2/3): 107-109.
    [25] Yih K A. Radiation effects on mixed convection over an isothermal cone in porous media[J]. Heat and Mass Transfer, 2001, 37(1): 53-57.
    [26] Takhar H S, Beg O A, Chamkha A J, Filip D, Pop I. Mixed radiation-convection boundary layer flow of an optically dense fluid along a vertical flat plate in a non-Darcy porous medium[J]. Int J Applied Mechanics and Engineering, 2003, 8(3): 483-496.
    [27] Afify A A. The effect of radiation on free convective flow and mass transfer past a vertical isothermal cone surface with chemical reaction in the presence of a transverse magnetic field[J]. Can J Physics, 2004, 82(6): 447-458.
    [28] Bég O A, Zueco J, Takhar H S, Bég T A. Network numerical simulation of impulsively-started transient radiation-convection heat and mass transfer in a saturated Darcy-Forchheimer porous medium[J]. Nonlinear Analysis: Modelling and Control, 2008, 13(3): 281-303.
    [29] Abd El-Naby M A, Elbarbary M E, AbdElazem N Y. Finite difference solution of radiation on MHD unsteady free-convection flow over vertical porous plate[J]. Applied Mathematics and Computation, 2004, 151(2): 327-346.
    [30] Roming M F. The influence of electric and magnetic fields on heat transfer to electrically conducting fluid[C]Advances in Heat Transfer. New York: Academic Press, 1964: 286-354.
    [31] Brewester M Q. Thermal Radiative Transfer and Properties[M]. New York: John Wiley and Sons, Inc, 1992.
    [32] Carnahan B, Luther H A, Wilkes J O. Applied Numerical Methods[M]. New York: John Wiley and Sons, 1969.
  • 加载中
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  71
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-15
  • 修回日期:  2012-01-04
  • 刊出日期:  2012-05-15

目录

    /

    返回文章
    返回