1981, 2(3): 307-320.
摘要:
本文用两种方法来分析桩受垂直载荷作用问题.一种是:将由Mindlin集中力组成的轴对称载荷沿弹性半空间z轴的[0,L]内分布,并迭加Boussinesq的解;另一种是:除上述诸虚载荷外,还将Mindlin的垂直集中力沿z轴的[0,L]内分布.前者使边界条件为: 的桩受垂直载荷问题归结为一个Fredholm第一种积分方程;后者使边界条件(其中1,3式同)(0.1)式中的2为:0≤z≤L,U(e,z)=a-e,(e→a);W(a,z)=常数(0.2)的桩受垂直载荷问题归结为两个联立的Fredholm第一种方程式.对刚性桩而言,前者适于容许桩和其侧面附着的土有相对滑动情况;后者适于无相对滑动情形.这两种方法较现有的虚载荷分布于桩表面的诸法具有下列优点:1.所得的积分方程不是二维、奇异的;而是一维、非奇异的.2.能考虑初应力的影响.第一种方法还无须预先假定沉陷函数W;在可压缩桩中容易考虑三维应力的影响的好处.本文还给出Fredholm第一种积分方程近似解误差估计的一个定理,以及两种方法用DJS—21机计算单桩沉陷的结果.